采样系统的分析_第1页
采样系统的分析_第2页
采样系统的分析_第3页
采样系统的分析_第4页
采样系统的分析_第5页
已阅读5页,还剩53页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

采样系统的分析第1页,共58页,2022年,5月20日,21点15分,星期三本章主要内容本章在阐述了离散控制系统相关基本概念后,学习了采样过程及采样第一张上一张下一张最后一张结束授课重点练习题定理、保持器的作用和数学模型、z变换的定义和求法、基本性质和z反变换的求法、线性差分方程的建立及其解法、脉冲传递函数的概念及求取方法、离散系统时域分析方法,简要介绍了频率法、根轨迹法在离散系统中的应用以及离散系统的校正方法。本章重点学习本章,需要掌握离散系统的相关基本概念,特别是采样过程和采样定理、z变换和z反变换及其性质、差分方程和脉冲传递函数等概念。在此基础上重点掌握利用脉冲传递函数求解离散系统的暂态响应,离散系统稳定性和稳态性能计算等内容。深入了解频率法、根轨迹法在离散系统分析中的应用,理解离散系统的串联校正和最少拍校正原理。第2页,共58页,2022年,5月20日,21点15分,星期三7-1离散采样系统的基本概念控制系统中有一个或若干个部件的输出信号是一串脉冲形式或是数字(数码),由于信号在时间上是离散的这类系统称为离散系统。两类离散系统:(1)采样控制系统或脉冲控制系统离散信号是脉冲序列(时间上离散)(2)数字控制系统或计算机控制系统离散信号是数字序列(时间上离散、幅值上整量化)第3页,共58页,2022年,5月20日,21点15分,星期三放大器与执行电动机炉燃料供应调节阀炉温炉温设定值D(z)G(s)D/A放大与伺服电动机A/D温度检测与变换计算机温度设定值炉温炉温采样控制系统炉温计算机(数字)控制系统第4页,共58页,2022年,5月20日,21点15分,星期三脉冲控制系统的特点:系统结构简单、投资少,适合于要求不高的场合。数字控制系统的特点:控制器的控制规律由计算机实现,使得控制规律比较灵活、控制精度高,而且可以借助计算机实现许多附加功能,例如系统运行状态检测、报警、保护等。性价比超过模拟控制器。在航空航天、军事、工业、公用事业系统中的各类控制系统已经广泛地运用计算机控制。数字控制系统中的两个关键部件:A/D转换器:把连续的模拟信号转换为时间上离散的、幅值上整量化的数字信号(二进制的整数),实际上具有对信号在时间点上采样,对信号幅值进行编码。(采样编码器)第5页,共58页,2022年,5月20日,21点15分,星期三一般要求A/D转换器具有足够的字长(8bit、10bit、12bit、14bit),要求量化单位q足够小。这样可以近似认为幅值的断续性可以忽略不记。同时,若采样编码的时间可以忽略,这时数字信号可以看成脉冲信号

A/D转换器可以认为采样周期为TS的理想采样开关。D/A转换器:把离散的数字信号转换为连续模拟信号。D/A转换器有两个工作过程:(1)解码,把离散的二进制数字信号转换为离散的模拟信号;(解码过程见p302图7-8(a))(2)模拟信号复现,通过“保持器”将离散模拟信号复现为连续的模拟信号,该信号才能真正驱动模拟放大器等。(复现过程见p302图7-8(b))第6页,共58页,2022年,5月20日,21点15分,星期三离散采样系统的研究方法(1)用Z变换法建立离散系统的数学模型后进行分析、综合。(2)用离散系统的状态空间分析法(一阶差分方程组)对系统进行分析、设计。7-2信号的采样与保持采样过程:连续信号采样器离散信号

第7页,共58页,2022年,5月20日,21点15分,星期三理想采样过程的数学描述:采样信号的Laplace变换:第8页,共58页,2022年,5月20日,21点15分,星期三例1设,求的L变换例2设为常数,求的L变换第9页,共58页,2022年,5月20日,21点15分,星期三香农采样定理:如果采样器的输入信号具有有限带宽,具有最高频率为的分量,只要采样周期满足以下条件:信号可以从采样信号中恢复过来。信号保持:D/A转换器的输出信号是台阶型的,在其内部是“保持器”在起作用。每个采样值能保持到下一个采样值到来之前,信号幅值没有变化。第10页,共58页,2022年,5月20日,21点15分,星期三零阶保持器:当给零阶保持器输入一个理想单位脉冲,则脉冲响应(输出)脉冲过渡函数:幅值为1,持续时间为T对应的L变换零阶保持器的频率特性第11页,共58页,2022年,5月20日,21点15分,星期三零阶保持器的特性:(1)低通特性(2)相角迟后特性(3)时间迟后特性(平均迟后时间T/2)一阶保持器第12页,共58页,2022年,5月20日,21点15分,星期三7-3Z变换(略)7-4离散系统的数学模型数学模型:差分方程、脉冲传递函数、离散状态空间表达式脉冲传递函数:在零初始条件下G(s)第13页,共58页,2022年,5月20日,21点15分,星期三实际开环离散系统的脉冲传递函数:G(s)在输出端增设虚拟采样开关脉冲传递函数G(z)的求法连续系统的传递函数G(s)脉冲响应函数g(t)

按采样周期离散化g*(t)Z变换G(z)对于虚拟采样开关的输出,相应的脉冲响应第14页,共58页,2022年,5月20日,21点15分,星期三对上式取L变换后:令记为:例3求以下差分方程所示系统的脉冲传递函数。由实数位移定理:第15页,共58页,2022年,5月20日,21点15分,星期三例4开环系统脉冲传递函数采样L变换的两个重要性质:(1)采样函数的L变换具有周期性第16页,共58页,2022年,5月20日,21点15分,星期三第17页,共58页,2022年,5月20日,21点15分,星期三(2)具有串联环节的开环脉冲传递函数串联形式(1)G2(s)G1(s)第18页,共58页,2022年,5月20日,21点15分,星期三连续对象的输出:其中:对输出的离散化:注意:一般第19页,共58页,2022年,5月20日,21点15分,星期三G2(s)G1(s)串联形式(2)第20页,共58页,2022年,5月20日,21点15分,星期三带有零阶保持器的开环脉冲传递函数Gp(s)Gp(s)离散化后:第21页,共58页,2022年,5月20日,21点15分,星期三例1:设对象传递函数求带零阶保持器后系统的脉冲传递函数:第22页,共58页,2022年,5月20日,21点15分,星期三当为有理分式函数时,上式的Z变换也必然是的有理分式函数。第23页,共58页,2022年,5月20日,21点15分,星期三闭环系统脉冲传递函数连续输出信号的L变换G(s)H(s)第24页,共58页,2022年,5月20日,21点15分,星期三对应的Z变换为闭环系统的输出对于输入的脉冲传递函数:系统误差对于输入的脉冲传递函数:闭环系统的特征方程:开环脉冲传递函数:应当注意:离散系统的闭环脉冲传递函数不能从对应的连续系统传递函数的Z变换直接得到。第25页,共58页,2022年,5月20日,21点15分,星期三闭环系统中,具有两个不同以上采样开关时的闭环脉冲传递函数:G2(s)G1(s)H(s)第26页,共58页,2022年,5月20日,21点15分,星期三对应的闭环系统脉冲传递函数闭环系统中采样开关的位置,有可能不能获得闭环脉冲传递函数:G(s)H(s)第27页,共58页,2022年,5月20日,21点15分,星期三系统输出G(s)H(s)表7-3给出典型闭环离散系统及输出的Z变换函数第28页,共58页,2022年,5月20日,21点15分,星期三Z变换的局限性:(1)Z变换的推导是建立在理想采样序列的基础上。而实际采样脉冲序列具有一定的宽度,只有当脉冲宽度与系统最大实践常数相比很小时,Z变换才能成立。(2)C(z)只能反映c(t)在采样时刻的数值,不能反映c(t)在采样间隔中的信息。(3)用Z变换方法分析离散系统,要求连续部分的传递函数的分母阶次比分子的阶次至少高2次,这时用Z变换方法得到的结果是正确的。例如:设R-C电路如图,输入相当于是脉冲序列第29页,共58页,2022年,5月20日,21点15分,星期三设输入信号为单位阶跃函数但实际上,电路的实际输出是作用下的输出,c(t)表现为充放电过程,如p.345图7-37所示。采样周期T=1秒,对应的Z变换第30页,共58页,2022年,5月20日,21点15分,星期三7-5离散系统的稳定性与稳态误差离散系统的稳定性的分析方法:将线性连续系统在s平面上分析稳定性的结果离散线性系统在z平面上的稳定性。1.s域到z域的映射关系第31页,共58页,2022年,5月20日,21点15分,星期三相当于取s平面上的虚轴映射到z平面上的轨迹:以原点为圆心的单位圆,相位:相应的点沿单位圆变化无穷多圈第32页,共58页,2022年,5月20日,21点15分,星期三结论:在等线的左半平面映射为z平面上同心圆的内部,右半平面映射为同心圆的外部。s平面的虚轴的左半平面映射为z平面上单位圆的内部,右半平面映射为单位圆的外部。离散系统稳定的充要条件:从离散系统的差分方程的齐次解的收敛性,或者从z域中离散系统的特征方程的根的研究得到结论。离散系统的稳定性定义:若离散系统在有界输入序列的作用下,其输出序列也是有界,则称该离散系统是稳定的。线性定常连续系统稳定的充要条件:系统齐次方程的解是收敛的,或者系统特征方程根均具有负实部,或者系统传递函数的极点严格均在左半s平面。第33页,共58页,2022年,5月20日,21点15分,星期三(1)离散系统稳定的充要条件(时域)设:系统差分方程系统齐次方程设通解:系统特征方程:第34页,共58页,2022年,5月20日,21点15分,星期三设特征方程具有各不相同的特征根:通解:系统稳定的充分必要条件:相应的线性定常离散系统是稳定的。(2)离散系统稳定的充要条件(z域)G(s)H(s)对于典型的离散系统结构的闭环脉冲传递函数为第35页,共58页,2022年,5月20日,21点15分,星期三系统特征方程设特征方程的根(闭环极点)各不相同由s平面到z平面的映射关系s平面的左半平面对应的稳定区域:z平面上单位圆的内部;s平面的右半平面对应的不稳定区域:z平面上单位圆的外部;s平面的虚轴对应的临界稳定:z平面上单位圆周。系统稳定的充分必要条件:离散特征方程的全部特征根都在单位圆内,即第36页,共58页,2022年,5月20日,21点15分,星期三例:设典型离散系统采样周期T=1(s),试分析系统的闭环稳定性。解:开环脉冲传递函数特征方程结论:闭环系统不稳定。第37页,共58页,2022年,5月20日,21点15分,星期三离散系统的稳定性判据连续系统的代数稳定判据—劳斯-胡尔维茨稳定判据判定:特征方程的根是否都在左半s平面?离散系统的稳定性:特征方程的根是否都在z平面的单位圆内?将劳斯-胡尔维茨判据用于离散系统的稳定性判定,首先要将z平面上的稳定域单位圆内新平面上的左半平面Z域w域第38页,共58页,2022年,5月20日,21点15分,星期三1.W变换(双线性变换)与劳斯稳定判据令注意到z和w都是复变量,则有显然:考察上式:在z平面的单位圆上,满足对应在w平面上:表明:w平面上的虚轴对应于z平面上的单位圆周。第39页,共58页,2022年,5月20日,21点15分,星期三Z平面单位圆内Z平面单位圆外w平面左半平面w平面右半平面劳斯稳定判据在离散系统中的应用:将离散系统在z域的特征方程变换为w域的特征方程,然后应用劳斯判据。第40页,共58页,2022年,5月20日,21点15分,星期三例1:设闭环离散系统如图所示,T=0.1(s),试求系统稳定时K的极限值。第41页,共58页,2022年,5月20日,21点15分,星期三进一步整理后,w域的特征方程:劳斯表由劳斯稳定判据使系统闭环稳定的取值范围极限增益第42页,共58页,2022年,5月20日,21点15分,星期三(2)Jury(朱利)稳定判据Jury稳定判据是根据离散系统的z域特征方程的系数,直接判别特征根是否严格位于z平面上的单位圆内。设离散系统的阶闭环特征方程

利用特征方程的系数,构造、列Jury矩阵。Jury矩阵的第一行系数:Jury矩阵的第一行系数:第43页,共58页,2022年,5月20日,21点15分,星期三第三行系数第四行系数第五行系数第六行系数第七行系数第八行系数最后行系数第44页,共58页,2022年,5月20日,21点15分,星期三

Jury稳定判据:特征方程的根,全部严格位于z平面上单位圆内的充要条件是:以及下列(n-1)个约束成立:若上述条件满足,系统不稳定。第45页,共58页,2022年,5月20日,21点15分,星期三推论1:特征方程的根全部在单位圆内的一个充分条件是推论2:具有系数的特征方程,其多项式为首一多项式的根全部都在单位圆内的充分条件是第46页,共58页,2022年,5月20日,21点15分,星期三例2设一离散时间单位反馈系统,采样周期T=1(s),其开环脉冲传递函数试用Jury稳定判据确定系统的K值范围。解:闭环特征方程对于二阶系统应用Jury稳定判据,只要用到下面3个约束条件:第47页,共58页,2022年,5月20日,21点15分,星期三综合(1)、(2)、(3)例3:第48页,共58页,2022年,5月20日,21点15分,星期三采样周期与开环增益对稳定性的影响连续系统的稳定性取决于:开环增益、闭环极点、传输延迟等。离散系统的稳定性:以上因素,再加上采样周期T。举例说明:设带有零阶保持器的离散系统如图所示第49页,共58页,2022年,5月20日,21点15分,星期三由Jury稳定判据或w域的劳斯稳定判据

w域的特征方程第50页,共58页,2022年,5月20日,21点15分,星期三P357图7-49给出K=1,不同采样时的单位阶跃响应。结论:(1)在保证系统稳定的前提下,采样周期越小,允许的开环增益范围就扩大,否则就缩小。(2)当采样周期一定时,加大开环增益会使得系统的稳定性变差;(3)当开环增益一定时,采样周期越长,丢失的信息就越多,对系统的稳定性和动态性能不利。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论