2022-2023学年甘肃省武威市八年级上学期数学期末模拟试题(5)有答案_第1页
2022-2023学年甘肃省武威市八年级上学期数学期末模拟试题(5)有答案_第2页
2022-2023学年甘肃省武威市八年级上学期数学期末模拟试题(5)有答案_第3页
2022-2023学年甘肃省武威市八年级上学期数学期末模拟试题(5)有答案_第4页
2022-2023学年甘肃省武威市八年级上学期数学期末模拟试题(5)有答案_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第页码18页/总NUMPAGES总页数18页2022-2023学年甘肃省武威市八年级上学期数学期末模拟试题(5)一、选一选:1.函数y=中自变量x的取值范围是()A.x>3 B.x<3 C.x≤3 D.x≥﹣3【正确答案】B【详解】解:由题意得,3-x>0,解得x<3.故选:B.本题考查函数自变量取值范围.2.若正比例函数的图象点(,2),则这个图象必点().A.(1,2) B. C.(2,) D.(1,)【正确答案】D【详解】设正比例函数的解析式为y=kx(k≠0),因为正比例函数y=kx的图象点(-1,2),所以2=-k,解得:k=-2,所以y=-2x,把这四个选项中的点的坐标分别代入y=-2x中,等号成立的点就在正比例函数y=-2x的图象上,所以这个图象必点(1,-2).故选:D.3.的倒数是()A.- B. C. D.【正确答案】C【详解】的倒数是,故选C.4.为迎接“劳动周”的到来,某校将九(1)班50名学生本周的课后劳动时间比上周都延长了10分钟,则该班学生本周劳动时间的下列数据与上周比较没有发生变化的是()A.平均数 B.中位数 C.众数 D.方差【正确答案】D【详解】【分析】根据平均数,中位数,众数,方差的定义或计算公式可以分析出结果.【详解】由已知可得,平均数增加了;中位数也增加了;众数也增加了;方差没有变.故选D本题考核知识点:数据的代表.解题关键点:理解相关定义.5.如果直角三角形的边长为3,4,a,则a的值是()A.5 B.6 C. D.5或【正确答案】D【分析】分两种情况分析:a是斜边或直角边,根据勾股定理可得.【详解】解:当a是斜边时,a=;当a是直角边时,a=所以,a的值是5或故选:D.本题考核知识点:勾股定理,解题关键点:分两种情况分析.6.一条直线y=kx+b,其中k+b=﹣5、kb=6,那么该直线A.第二、四象限 B.、二、三象限 C.、三象限 D.第二、三、四象限【正确答案】D【详解】∵k+b=-5,kb=6,∴kb是一元二次方程的两个根.解得,或.∴k<0,b<0.函数的图象有四种情况:①当,时,函数的图象、二、三象限;②当,时,函数图象、三、四象限;③当,时,函数的图象、二、四象限;④当,时,函数的图象第二、三、四象限.∴直线y=kx+b二、三、四象限.故选D.7.如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,则∠BCE的度数是()A.22.5° B.25° C.23° D.20°【正确答案】A【分析】根据正方形的性质,易知∠CAE=∠ACB=45°;等腰△CAE中,根据三角形内角和定理可求得∠ACE的度数,进而可由∠BCE=∠ACE﹣∠ACB得出∠BCE的度数.【详解】解:∵四边形ABCD是正方形,∴∠CAB=∠BCA=45°;△ACE中,AC=AE,则:∠ACE=∠AEC=(180°﹣∠CAE)=67.5°;∴∠BCE=∠ACE﹣∠ACB=22.5°.考点:正方形的性质.8.已知函数y=kx+b的图象如图所示,则关于x的没有等式的解集为A B. C. D.【正确答案】B【详解】试题分析:∵函数y=kx+b点(3,0),∴3k+b=0,∴b=-3k.将b=-3k代入k(x-4)-2b>0,得k(x-4)-2×(-3k)>0,去括号得:kx-4k+6k>0,移项、合并同类项得:kx>-2k;∵函数值y随x的增大而减小,∴k<0;将没有等式两边同时除以k,得x<-2.故选B.考点:函数与一元没有等式.9.把边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,边BC与D′C′交于点O,则四边形ABOD′的周长是()A.6 B.6 C.3 D.3+3【正确答案】A【分析】由边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,利用勾股定理的知识求出BC′的长,再根据等腰直角三角形的性质,勾股定理可求BO,OD′,从而可求四边形ABOD′的周长.【详解】解:如图,连接BC′,∵旋转角∠BAB′=45°,∠BAD′=45°,∴B在对角线AC′上,∵B′C′=AB′=3,在Rt△AB′C′中,AC′=,∴BC′=3﹣3,在等腰Rt△OBC′中,OB=BC′=3﹣3,在直角三角形OBC′中,OC′=(3﹣3)=6﹣3,∴OD′=3﹣OC′=3﹣3,∴四边形ABOD′的周长是:2AD′+OB+OD′=6+3﹣3+3﹣3=6.故选:A.本题考查了旋转的性质、正方形的性质以及等腰直角三角形的性质.此题难度适中,注意连接BC′构造等腰Rt△OBC′是解题的关键,注意旋转中的对应关系.10.图①是我国古代的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中的边长为6的直角边分别向外延长一倍,得到图②所示的“数学风车”,则这个风车的外围周长是()A.51 B.49 C.76 D.无法确定【正确答案】C【详解】试题解析:依题意得,设“数学风车”中的四个直角三角形的斜边长为x,则x2=122+52=169,解得x=13.故“数学风车”的周长是:(13+6)×4=76.故选:C.11.如图所示,已知△ABC中,AB=6,AC=9,AD⊥BC于D,M为AD上任一点,则MC2-MB2等于()A.9 B.35 C.45 D.无法计算【正确答案】C【详解】【分析】由勾股定理求出BM2=BD2+MD2=AB2-AD2+MD2,MC2=CD2+MD2=AC2-AD2+MD2,再代入可得MC2-MB2=(AC2-AD2+MD2)-(AB2-AD2+MD2),化简可求得结果.【详解】在Rt△ABD和Rt△ADC中,BD2=AB2-AD2,CD2=AC2-AD2,在Rt△BDM和Rt△CDM中,BM2=BD2+MD2=AB2-AD2+MD2,MC2=CD2+MD2=AC2-AD2+MD2,∴MC2-MB2=(AC2-AD2+MD2)-(AB2-AD2+MD2)=AC2-AB2=45.故选C本题考核知识点:勾股定理.解题关键点:灵活运用勾股定理.12.如图,在平面直角坐标系中,边长为1的正方形ABCD中,AD边的中点处有一动点P,动点P沿P→D→C→B→A→P运动一周,则P点的纵坐标y与点P走过的路程s之间的函数关系用图象表示大致是()A.B.C.D.【正确答案】D【详解】试题解析:动点P运动过程中:①当0≤s≤时,动点P在线段PD上运动,此时y=2保持没有变;②当<s≤时,动点P在线段DC上运动,此时y由2到1逐渐减少;③当<s≤时,动点P在线段CB上运动,此时y=1保持没有变;④当<s≤时,动点P在线段BA上运动,此时y由1到2逐渐增大;⑤当<s≤4时,动点P在线段AP上运动,此时y=2保持没有变.函数图象,只有D选项符合要求.故选D.考点:动点问题的函数图象.二、填空题:13.计算:=_______.【正确答案】3【分析】先把化成,然后再合并同类二次根式即可得解.【详解】原式=2.故答案为本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行然后合并同类二次根式.14.甲、乙两人进行射击测试,每人10次射击成绩的平均数都是8.5环,方差分别是:=2,=1.5,则射击成绩较稳定的是_______(填“甲”或“乙”).【正确答案】答案:乙;【详解】【分析】在样本容量相同的情况下,方差越大,说明数据的波动越大,越没有稳定.【详解】在样本容量相同的情况下,方差越大,说明数据的波动越大,越没有稳定;乙的方差比较小,所以乙的成绩比较稳定.故答案为乙本题考核知识点:方差.解题关键点:理解方差的意义.15.如图,直线y=3x和y=kx+2相交于点P(a,3),则关于x没有等式(3﹣k)x≤2的解集为_____.【正确答案】x≤1.【详解】【分析】先把点P(a,3)代入直线y=3x求出a的值,可得出P点坐标,再根据函数图象进行解答即可.【详解】∵直线y=3x和直线y=kx+2的图象相交于点P(a,3),∴3=3a,解得a=1,∴P(1,3),由函数图象可知,当x≤1时,直线y=3x图象在直线y=kx+2的图象的下方.即当x≤1时,kx+2≥3x,即:(3-k)x≤2.故正确x≤1.本题考查的是函数与一元没有等式,能利用数形求出没有等式的解集是解答此题的关键.16.如图所示,数轴上点A所表示的数为a,则a的值是____.【正确答案】【分析】根据数轴上点的特点和相关线段的长,利用勾股定理求出斜边的长,即知表示0的点和A之间的线段的长,进而可推出A的坐标.【详解】解:∵直角三角形的两直角边为1,2,∴斜边长为,那么a的值是:﹣.故答案为.此题主要考查了实数与数轴之间的对应关系,其中主要利用了:已知两点间的距离,求较大的数,就用较小的数加上两点间的距离.17.如果直线l与直线y=﹣2x+1平行,与直线y=﹣x+2的交点纵坐标为1,那么直线l的函数解析式为__.【正确答案】y=﹣2x+3.【分析】设直线l的函数解析式为y=kx+b,先由平行关系求k,再根据交点求出b.【详解】设直线l的函数解析式为y=kx+b,因为,直线l与直线y=﹣2x+1平行,所以,y=﹣2x+b,因为,与直线y=﹣x+2的交点纵坐标为1,所以,1=﹣x+2,x=1所以,把(1,1)代入y=-2x+b,解得b=3.所以,直线l的函数解析式为:y=﹣2x+3.故答案为y=﹣2x+3.本题考核知识点:函数解析式.解题关键点:熟记函数的性质.18.已知直角坐标系内有四个点A(-1,2),B(3,0),C(1,4),D(x,y),若以A,B,C,D为顶点的四边形是平行四边形,则D点的坐标为___________________.【正确答案】(5,2),(-3,6),(1,-2).【分析】D的位置分三种情况分析;由平行四边形对边平行关系,用平移规律求出对应点坐标.【详解】解:根据平移性质可以得到AB对应DC,所以,由B,C的坐标关系可以推出A,D的坐标关系,即D(-1-2,2+4),所以D点的坐标为(-3,6);同理,当AB与CD对应时,D点的坐标为(5,2);当AC与BD对应时,D点的坐标为(1,-2)故(5,2),(-3,6),(1,-2).本题考核知识点:平行四边形和平移.解题关键点:用平移求出点的坐标.三、作图题:19.作一直线,将下图分成面积相等的两部分(保留作图痕迹).【正确答案】见解析【详解】解:将此图形分成两个矩形,分别作出两个矩形的对角线的交点,,则,分别为两矩形的对称,过点,的直线就是所求的直线,如图所示.四、解答题:20.化简:(.【正确答案】8-4【详解】【分析】运用平方差公式和完全平方公式可求出结果.【详解】解:原式=2﹣1+3﹣4+4=8﹣4.本题考核知识点:整式运算.解题关键点:熟记平方差公式和完全平方公式.21.已知直线y=﹣3x+6与x轴交于A点,与y轴交于B点.(1)求A,B两点的坐标;(2)求直线y=﹣3x+6与坐标轴围成的三角形的面积.【正确答案】(1)A(2,0),B(0,6);(2)6.【详解】试题分析:(1)分别令x=0、y=0求解即可得到与坐标轴的交点;(2)根据三角形的面积公式列式计算即可得解.解:(1)当x=0时,y=﹣3x+6=6,当y=0时,0=﹣3x+6,x=2.所以A(2,0),B(0,6);(2)直线与坐标轴围成的三角形的面积=S△ABO=×2×6=6.考点:函数图象上点的坐标特征.22.如图,某住宅小区在施工过程中留下了一块空地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问用该草坪铺满这块空地共需花费多少元?【正确答案】2400元【详解】试题分析:连接AC,根据勾股定理求出AC,根据勾股定理的逆定理求出∠ACB=90°,求出区域的面积,即可求出答案.试题解析:连结AC,在Rt△ACD中,∠ADC=90°,AD=4米,CD=3米,由勾股定理得:AC=(米),∵AC2+BC2=52+122=169,AB2=132=169,∴AC2+BC2=AB2,∴∠ACB=90°,该区域面积S=S△ACB﹣S△ADC=×5×12﹣×3×4=24(平方米),即铺满这块空地共需花费=24×100=2400元.考点:1.勾股定理;2.勾股定理的逆定理.23.如图,E是▱ABCD的边CD的中点,延长AE交BC的延长线于点F.(1)求证:△ADE≌△FCE.(2)若∠BAF=90°,BC=5,EF=3,求CD的长.【正确答案】(1)证明过程见解析;(2)8【分析】(1)由平行四边形的性质得出AD∥BC,AB∥CD,证出∠DAE=∠F,∠D=∠ECF,由AAS证明△ADE≌△FCE即可;(2)由全等三角形的性质得出AE=EF=3,由平行线的性质证出∠AED=∠BAF=90°,由勾股定理求出DE,即可得出CD的长.【详解】(1)∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAE=∠F,∠D=∠ECF,∵E是▱ABCD的边CD的中点,∴DE=CE,在△ADE和△FCE中,,∴△ADE≌△FCE(AAS);(2)∵ADE≌△FCE,∴AE=EF=3,∵AB∥CD,∴∠AED=∠BAF=90°,▱ABCD中,AD=BC=5,∴DE==4,∴CD=2DE=8考点:(1)平行四边形的性质;(2)全等三角形的判定与性质24.现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品没有超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更?【正确答案】(1),;(2)当<x<4时,选乙快递公司;当x=4或x=时,选甲、乙两家快递公司快递费一样多;当0<x<或x>4时,选甲快递公司【分析】(1)根据“甲公司的费用=起步价+超出重量×续重单价”可得出y甲关于x的函数关系式,根据“乙公司的费用=快件重量×单价+包装费用”即可得出y乙关于x的函数关系式;(2)分0<x≤1和x>1两种情况讨论,分别令y甲<y乙、y甲=y乙和y甲>y乙,解关于x的方程或没有等式即可得出结论.【详解】解:(1)由题意知:当0<x≤1时,y甲=22x;当1<x时,y甲=22+15(x﹣1)=15x+7,y乙=16x+3;∴,;(2)①当0<x≤1时,令y甲<y乙,即22x<16x+3,解得:0<x<;令y甲=y乙,即22x=16x+3,解得:x=;令y甲>y乙,即22x>16x+3,解得:<x≤1.②x>1时,令y甲<y乙,即15x+7<16x+3,解得:x>4;令y甲=y乙,即15x+7=16x+3,解得:x=4;令y甲>y乙,即15x+7>16x+3,解得:0<x<4综上可知:当<x<4时,选乙快递公司;当x=4或x=时,选甲、乙两家快递公司快递费一样多;当0<x<或x>4时,选甲快递公司.25.如图1,平面直角坐标系中,直线AB:y=﹣x+b交x轴于点A(8,0),交y轴正半轴于点B.(1)求点B的坐标;(2)如图2,直线AC交y轴负半轴于点C,AB=BC,P为线段AB上一点,过点P作y轴的平行线交直线AC于点Q,设点P的横坐标为t,线段PQ的长为d,求d与t之间的函数关系式;(3)在(2)的条件下,M为CA延长线上一点,且AM=CQ,在直线AC上方的直线AB上是否存在点N,使△QMN是以QM为斜边的等腰直角三角形?若存在,请求出点N的坐标及PN的长度;若没有存在,请说明理由.【正确答案】(1)B(0,6);(2)d=﹣t+10;(3)见解析.【详解】【分析】(1)把A(8,0)代入y=﹣x+b,可求解析式,再求B的坐标;(2)先求点C(0,﹣4),再求直线AC解析式,可设点P(t,﹣t+6),Q(t,t﹣4),所以d=(﹣t+6)﹣(t﹣4);过点M作MG⊥PQ于G,证△OAC≌△GMQ,得QG=OC=4,GM=OA=8;过点N作NH⊥PQ于H,过点M作MR⊥NH于点R,得四边形GHRM是矩形,得HR=GM=8;设GH=RM=k,由△HNQ≌△RMN,得HN=RM=k,NR=QH=4+k,由HR=HN+NR,得k+4+k=8,可得GH=NH=RM=2,HQ=6,由Q(t,t﹣4),得N(t+2,t﹣4+6

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论