2022年黑龙江省绥化市某学校数学高职单招模拟考试(含答案)_第1页
2022年黑龙江省绥化市某学校数学高职单招模拟考试(含答案)_第2页
2022年黑龙江省绥化市某学校数学高职单招模拟考试(含答案)_第3页
2022年黑龙江省绥化市某学校数学高职单招模拟考试(含答案)_第4页
2022年黑龙江省绥化市某学校数学高职单招模拟考试(含答案)_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年黑龙江省绥化市某学校数学高职单招模拟考试(含答案)学校:________班级:________姓名:________考号:________

一、单选题(10题)1.若a>b.则下列各式正确的是A.-a>-b

B.C.D.

2.A.-1B.0C.2D.1

3.对于数列0,0,0,...,0,...,下列表述正确的是()A.是等比但不是等差数列B.既是等差又是等比数列C.既不是等差又不是等比数列D.是等差但不是等比数列

4.椭圆的焦点坐标是()A.(,0)

B.(±7,0)

C.(0,±7)

D.(0,)

5.若f(x)=ax2+bx(ab≠0),且f(2)=f(3),则f(5)等于()A.1B.-1C.0D.2

6.A.

B.

C.

7.A.B.C.D.

8.A.1B.-1C.2D.-2

9.有四名高中毕业生报考大学,有三所大学可供选择,每人只能填报一所大学,则报考的方案数为()A.

B.

C.

D.

10.把6本不同的书分给李明和张强两人,每人3本,不同分法的种类数为()A.

B.

C.

D.

二、填空题(10题)11.圆x2+y2-4x-6y+4=0的半径是_____.

12.某机电班共有50名学生,任选一人是男生的概率为0.4,则这个班的男生共有

名。

13.化简

14.已知数列{an}是各项都是正数的等比数列,其中a2=2,a4=8,则数列{an}的前n项和Sn=______.

15.某校有高中生1000人,其中高一年级400人,高二年级300人,高三年级300人,现釆取分层抽样的方法抽取一个容量为40的样本,则高三年级应抽取的人数是_____人.

16.若f(x)=2x3+1,则f(1)=

17.

18.

19.按如图所示的流程图运算,则输出的S=_____.

20.sin75°·sin375°=_____.

三、计算题(5题)21.已知函数y=cos2x+3sin2x,x∈R求:(1)函数的值域;(2)函数的最小正周期。

22.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2

.

23.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.

24.在等差数列{an}中,前n项和为Sn

,且S4

=-62,S6=-75,求等差数列{an}的通项公式an.

25.解不等式4<|1-3x|<7

四、证明题(5题)26.

27.己知

a

=(-1,2),b

=(-2,1),证明:cos〈a,b〉=4/5.

28.己知直线l:x+y+4=0且圆心为(1,-1)的圆C与直线l相切。证明:圆C的标准方程为(x-1)2

+(y+1)2

=8.

29.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.

30.若x∈(0,1),求证:log3X3<log3X<X3.

五、简答题(5题)31.已知求tan(a-2b)的值

32.已知双曲线C:的右焦点为,且点到C的一条渐近线的距离为.(1)求双曲线C的标准方程;(2)设P为双曲线C上一点,若|PF1|=,求点P到C的左焦点的距离.

33.已知平行四边形ABCD中,A(-1,0),B(-1,-4),C(3,-2),E是AD的中点,求。

34.设函数是奇函数(a,b,c∈Z)且f(1)=2,f(2)<3.(1)求a,b,c的值;(2)当x<0时,判断f(x)的单调性并加以证明.

35.如图,在直三棱柱中,已知(1)证明:AC丄BC;(2)求三棱锥的体积.

六、综合题(5题)36.己知点A(0,2),5(-2,-2).(1)求过A,B两点的直线l的方程;(2)己知点A在椭圆C:上,且(1)中的直线l过椭圆C的左焦点。求椭圆C的标准方程.

37.

(1)求该直线l的方程;(2)求圆心该直线上且与两坐标轴相切的圆的标准方程.

38.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)

39.己知椭圆与抛物线y2=4x有共同的焦点F2,过椭圆的左焦点F1作倾斜角为的直线,与椭圆相交于M、N两点.求:(1)直线MN的方程和椭圆的方程;(2)△OMN的面积.

40.

参考答案

1.C

2.D

3.D

4.D

5.C

6.C

7.B

8.A

9.C

10.D

11.3,

12.20男生人数为0.4×50=20人

13.1+2cos2a-cos2=1+2cos2a-(cos2a-sin2a)=1+cos2a+sin2a=2

14.2n-1

15.12,高三年级应抽人数为300*40/1000=12。

16.3f(1)=2+1=3.

17.

18.π/2

19.20流程图的运算.由题意可知第一次a=5,s=1,满足a≥4,S=1×5=5,a=a-1=4,当a=4时满足a≥4,输出S=20.综上所述,答案20.

20.

21.

22.

23.

24.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23

25.

26.

27.

28.

29.

∴PD//平面ACE.

30.

31.

32.(1)∵双曲线C的右焦点为F1(2,0),∴c=2又点F1到C1的一条渐近线的距离为,∴,即以解得b=

33.平行四边形ABCD,CD为AB平移所得,从B点开始平移,于是C平移了(4,2),所以,D(-1+4,0+2)=(3,2),E是AD中点,E[(-1+3)/2,(0+2)/2]=(1,1)向量EC=(3-1,-2-1)=(2,-3),向量ED=(3-1,2-1)=(2,1)向量EC×向量ED=2×2+(-3)×1=1。

34.

∴得2c=0∴得c=0又∵由f(1)=2∴得又∵f(2)<3∴

∴得0<b<∵b∈Z∴b=1∴(2)设-1<<<0∵

若时

故当X<-1时为增函数;当-1≤X<0为减函数

35.

36.解:(1)直线l过A(0,2),B(-2,-2)两点,根据斜率公式可得斜率因此直线l的方程为y-2=2x即2x-y+2=0⑵由⑴知,直线l的方程为2x-y+2=0,因此直线l与x轴的交点为(-1,0).又直线l过椭圆C的左焦点,故椭圆C的左焦点为(-1,0).设椭圆C的焦距为2c,则有c=1因为点A(0,2)在椭圆C:上所以b=2根据a2=b2+c2,有a=故椭圆C的标准方程为

37.解:(1)斜率k=5/3,设直线l的方程5x-3y+m=0,直线l经过点(0,-8/3),所以m=8,直线l的方程为5x-3y-8=0。(2)设圆心为C(a,b),圆与两坐标轴相切,故a

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论