版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列图形中对称轴只有两条的是()A. B. C. D.2.下列调查中,调查方式最适合普查(全面调查)的是()A.对全国初中学生视力情况的调查B.对2019年央视春节联欢晚会收视率的调查C.对一批飞机零部件的合格情况的调查D.对我市居民节水意识的调查3.如图,正方形ABCD的面积是(
)A.5 B.25 C.7
D.104.为积极响应南充市创建“全国卫生城市”的号召,某校1500名学生参加了卫生知识竞赛,成绩记为A、B、C、D四等.从中随机抽取了部分学生成绩进行统计,绘制成如图所示的两幅不完整的统计图,根据图中信息,以下说法不正确的是()A.样本容量是200B.D等所在扇形的圆心角为15°C.样本中C等所占百分比是10%D.估计全校学生成绩为A等的大约有900人5.若分式的值为0,则()A.x=-2 B.x=0 C.x=1 D.x=1或-26.已知关于x的不等式2x-m>-3的解集如图所示,则m的取值为()A.2 B.1 C.0 D.-17.使二次根式有意义的x的取值范围是()A.x≠1 B.x>1 C.x≤1 D.x≥18.图①是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中的边长为6的直角边分别向外延长一倍,得到图②所示的“数学风车”,则这个风车的外围周长是(
)A.51 B.49 C.76 D.无法确定9.如图,平分,于,于,与的交点为,则图中全等三角形共有()A.2对 B.3对 C.4对 D.5对10.如图,有一个池塘,其底面是边长为10尺的正方形,一个芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B′.则这根芦苇的长度是()A.10尺 B.11尺 C.12尺 D.13尺11.下列各数是无理数的是()A. B.(两个1之间的0依次多1个)C. D.12.如图,在等腰Rt△ABC中,∠ACB=90°,,点D为AB的中点,点E在BC上,CE=2,将线段ED绕点E按顺时针方向旋转90°得到EF,连接DF,然后把△DEF沿着DE翻折得到△DEF′,连接AF′,BF′,取AF′的中点G,连接DG,则DG的长为()A. B. C.2 D.二、填空题(每题4分,共24分)13.点关于轴的对称点的坐标为______.14.若关于x的分式方程无解,则m=_________.15.在中,°,,,某线段,,两点分别在和的垂线上移动,则当__________.时,才能使和全等.16.已知5+7的小数部分为a,5﹣7的小数部分为b,则a+b=_____.17.已知点与点关于轴对称,则________,________.18.如图,∠BAC=30°,点D为∠BAC内一点,点E,F分别是AB,AC上的动点.若AD=9,则△DEF周长的最小值为____.三、解答题(共78分)19.(8分)如图,在四边形中,,点是边上一点,,,垂足为点,交于点,连接.(1)四边形是平行四边形吗?说明理由;(2)求证:;(3)若点是边的中点,求证:.20.(8分)计算:(1)计算:(2)因式分解x2(x-2)+(2-x)21.(8分)如图,在平面直角坐标系xOy中,直线与x轴、y轴分别交于点A、点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处,直线AB与直线DC相交于点E.(1)求AB的长;(2)求△ADE的面积:(3)若点M为直线AD上一点,且△MBC为等腰直角三角形,求M点的坐标.22.(10分)如图,在△ABC中,AC=6,BC=8,DE是△ABD的边AB上的高,且DE=4,AD=,BD=.求证:△ABC是直角三角形.23.(10分)阅读下列材料:在学习“分式方程及其解法”过程中,老师提出一个问题:若关于x的分式方程的解为正数,求a的取值范围?经过小组交流讨论后,同学们逐渐形成了两种意见:小明说:解这个关于x的分式方程,得到方程的解为x=a﹣1.由题意可得a﹣1>0,所以a>1,问题解决.小强说:你考虑的不全面.还必须保证a≠3才行.老师说:小强所说完全正确.请回答:小明考虑问题不全面,主要体现在哪里?请你简要说明:.完成下列问题:(1)已知关于x的方程=1的解为负数,求m的取值范围;(1)若关于x的分式方程=﹣1无解.直接写出n的取值范围.24.(10分)阅读下面内容,并解答问题.在学习了平行线的性质后,老师请学们证明命题:两条平行线被第三条直线所截,一组同旁内角的平分线互相垂直。小颖根据命题画出图形并写出如下的已知条件.已知:如图1,,直线分别交,于点,.的平分线与的平分线交于点.求证:______________.(1)请补充要求证的结论,并写出证明过程;(2)请从下列A、B两题中任选一题作答,我选择_______题.A.在图1的基础上,分别作的平分线与的平分线交于点,得到图2,则的度数为_______.B.如图3,,直线分别交,于点,.点在直线,之间,且在直线右侧,的平分线与的平分线交于点,则与满足的数量关系为_______.25.(12分)如图,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点(端点除外),点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,连接AQ、CP交于点M,则在P、Q运动的过程中,(1)求证:△ABQ≌△CAP;(2)∠CMQ的大小变化吗?若变化,则说明理由,若不变,则求出它的度数;(3)连接PQ,当点P、Q运动多少秒时,△APQ是等腰三角形?26.如图,一条直线分别与直线、直线、直线、直线相交于点,且,.求证:.
参考答案一、选择题(每题4分,共48分)1、C【分析】根据对称轴的定义,分别找出四个选项的中的图形的对称轴条数,即可得到答案.【详解】圆有无数条对称轴,故A不是答案;等边三角形有三条对称轴,故B不是答案;长方形有两条对称轴,故C是答案;等腰梯形只有一条对称轴,故D不是答案.故C为答案.【点睛】本题主要考查了对称轴的基本概念(如果沿着某条直线对折,对折的两部分是完全重合的,那么这条直线就叫做这个图形的对称轴),熟记对称轴的概念是解题的关键.2、C【分析】根据普查和抽样调查的特点解答即可.【详解】解:A.对全国初中学生视力情况的调查,适合用抽样调查,不合题意;B.对2019年央视春节联欢晚会收视率的调查,适合用抽样调查,不合题意;C.对一批飞机零部件的合格情况的调查,适合全面调查,符合题意;D.对我市居民节水意识的调查,适合用抽样调查,不合题意;故选:C.【点睛】本题考查了抽样调查和全面调查的知识,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3、B【解析】在直角△ADE中利用勾股定理求出AD2,即为正方形ABCD的面积.【详解】解:∵在△ADE中,∠E=90°,AE=3,DE=4,∴AD2=AE2+DE2=32+42=1,∴正方形ABCD的面积=AD2=1.故选B.【点睛】本题考查勾股定理的应用,掌握公式正确计算是解题关键.4、B【详解】抽取的样本容量为50÷25%=1.所以C等所占的百分比是20÷1×100%=10%.D等所占的百分比是1-60%-25%-10%=5%.因此D等所在扇形的圆心角为360°×5%=18°.全校学生成绩为A等的大约有1500×60%=900(人).故选B.5、C【分析】要使分式的值等于0,则分子等于0,且分母不等于0.【详解】若分式的值为0,则x-1=0,且x+2≠0,所以,x=1,x≠-2,即:x=1.故选C【点睛】本题考核知识点:分式值为0的条件.解题关键点:熟记要使分式的值等于0,则分子等于0,且分母不等于0.6、D【分析】本题是关于x的不等式,应先只把x看成未知数,求得x的解集,再根据数轴上的解集,来求得a的值.【详解】2x>m−3,解得x>,∵在数轴上的不等式的解集为:x>−2,∴=−2,解得m=−1;故选:D.【点睛】当题中有两个未知字母时,应把关于某个字母的不等式中的字母当成未知数,求得解集,再根据数轴上的解集进行判断,求得另一个字母的值.7、D【分析】根据被开方式大于且等于零列式求解即可.【详解】由题意得x-1≥0,∴x≥1.故选D.【点睛】本题考查了二次根式的定义,形如的式子叫二次根式,熟练掌握二次根式成立的条件是解答本题的关键.8、C【解析】试题解析:依题意得,设“数学风车”中的四个直角三角形的斜边长为x,则x2=122+52=169,解得x=1.故“数学风车”的周长是:(1+6)×4=2.故选C.9、C【详解】∵平分∴∠BOC=∠AOC又∵,∴∠AEO=∠BDO=90°又∵OC=OC∴∴OD=OE,CD=CE又∵∠BOD=∠AOE∴∴OA=OB,∠A=∠B∴又∵∠ACD=∠BCE∴故答案为C.【点睛】此题主要考查全等三角形的判定,熟练掌握,即可解题.10、D【分析】我们可以将其转化为数学几何图形,可知边长为10尺的正方形,则B'C=5尺,设出AB=AB'=x尺,表示出水深AC,根据勾股定理列出方程,求出的方程的解即可得到芦苇的长.【详解】解:设芦苇长AB=AB′=x尺,则水深AC=(x﹣1)尺,因为边长为10尺的正方形,所以B'C=5尺在Rt△AB'C中,52+(x﹣1)2=x2,解之得x=13,即芦苇长13尺.故选D.【点睛】此题主要考查了勾股定理的应用,熟练运用数形结合的解题思想是解题关键.11、B【分析】根据无理数是无限不循环小数对四个选项进行逐一分析即可.【详解】A.是分数,是有理数,故该选项不符合题意,B.(两个1之间的0依次多1个)是无限不循环小数,是无理数,故该选项符合题意,C.=2,是整数,是有理数,故该选项不符合题意,D.是有限小数,是有理数,故该选项不符合题意,故选:B.【点睛】本题主要考查了无理数的定义,无理数就是无限不循环小数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及0.1010010001…,等有这样规律的数.12、B【分析】如图中,作于点,于.根据已知条件得到,,根据三角形的中位线的选择定理得到,得到,根据全等三角形的选择得到,,求得,得到,根据三角形中位线的性质定理即可得到结论.【详解】解:如图中,作于点,于.,点为的中点,,,,,,,,,,,,,,,,,,,点为的中点,取的中点,,;故选:.【点睛】本题考查了等腰直角三角形的性质,全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.二、填空题(每题4分,共24分)13、【分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数.【详解】∵关于y轴对称的点,纵坐标相同,横坐标互为相反数∴点关于y轴的对称点的坐标为.故答案为:【点睛】考核知识点:轴对称与点的坐标.理解轴对称和点的坐标关系是关键.14、2【解析】因为关于x的分式方程无解,即分式方程去掉分母化为整式方程,整式方程的解就是方程的增根,即x=3,据此即可求解.【详解】两边同时乘以(x-3)去分母解得x=1+m,∵方程无解,∴说明有增根x=3,所以1+m=3,解得m=2,故答案为:2.【点睛】本题考查了分式方程的解,理解分式方程的增根产生的原因是解题的关键.15、5㎝或10㎝【分析】本题要分情况讨论:①Rt△ABC≌Rt△QPA,此时AP=BC=5cm,可据此求出P点的位置;②Rt△ABC≌Rt△PQA,此时AP=AC,P、C重合.【详解】解:∵PQ=AB,∴根据三角形全等的判定方法HL可知,当P运动到AP=BC时,在Rt△ABC和Rt△QPA中,∴Rt△ABC≌Rt△QPA(HL),即AP=BC=5cm;当P运动到与C点重合时,在Rt△ABC和Rt△QPA中,∴Rt△ABC≌Rt△PQA(HL),即AP=AC=10cm.故答案为5㎝或10㎝.【点睛】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.16、2【解析】先估算出5+7的整数部分,然后可求得a的值,然后再估算出5-7的整数部分,然后可求得b的值,最后代入计算即可.【详解】解:∵4<7<9,
∴2<7<2.
∴a=5+7-7=7-2,b=5-7-2=2-7.
∴a+b=7-2+2-7=2.故答案为:2.【点睛】本题主要考查的是估算无理数的大小,求得a,b的值是解题的关键.17、3-1【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”列方程求解即可.【详解】∵点A(m-1,3)与点B(2,n+1)关于x轴对称,∴m-1=2,n+1=-3,解得m=3,n=-1.故答案为3,-1.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.18、1;【分析】由对称的性质可得:DE=EM,DF=FN,AM=AD=AN=1,∠MAE=∠DAE,∠NAF=∠DAF,然后根据两点之间线段最短可得此时MN即为△DEF的周长的最小值,然后根据等边三角形的判定定理及定义即可求出结论.【详解】解:过点D分别作AB、AC的对称点M、N,连接MN分别交AB、AC于点E、F,连接DE、DF、AD、AM和AN由对称的性质可得:DE=EM,DF=FN,AM=AD=AN=1,∠MAE=∠DAE,∠NAF=∠DAF∴△DEF的周长=DE+EF+DF=EM+EF+FN=MN,∠MAE+∠NAF=∠DAE+∠DAF=∠BAC=30°∴根据两点之间线段最短,此时MN即为△DEF的周长的最小值,∠MAN=∠MAE+∠NAF+∠BAC=60°∴△MAN为等边三角形∴MN=AM=AN=1即△DEF周长的最小值为1故答案为:1.【点睛】此题考查的是对称的性质、等边三角形的判定及定义和两点之间线段最短的应用,掌握对称的性质、等边三角形的判定及定义和两点之间线段最短是解决此题的关键.三、解答题(共78分)19、(1)四边形是平行四边形,理由见解析;(2)见解析;(3)见解析【分析】(1)由可得AB∥DC,再由AB=DC即可判定四边形ABCD为平行四边形;(2)由AB∥DC可得∠AED=∠CDE,然后根据CE=AB=DC可得∠CDE=∠CED,再利用三角形内角和定理即可推出∠AED与∠DCE的关系;(3)延长DA,FE交于点M,由“AAS”可证△AEM≌△BEF,可得ME=EF,由直角三角形的性质可得DE=EF=ME,由等腰三角形的性质和外角性质可得结论.【详解】(1)四边形是平行四边形,理由如下:∵∴AB∥DC又∵AB=DC∴四边形是平行四边形.(2)∵AB∥DC∴∠AED=∠CDE又∵AB=DC,CE=AB∴DC=CE∴∠CDE=∠CED∴在△CDE中,2∠CDE+∠DCE=180°∴∠CDE=90°-∠DCE∴(3)如图,延长DA,FE交于点M,∵四边形ABCD为平行四边形∴DM∥BC,DF⊥BC∴∠M=∠EFB,DF⊥DM∵E为AB的中点∴AE=BE在△AEM和△BEF中,∵∠M=∠EFB,∠AEM=∠BEF,AE=BE∴△AEM≌△BEF(AAS)∴ME=EF∴在Rt△DMF中,DE为斜边MF上的中线∴DE=ME=EF∴∠M=∠MDE,∴∠DEF=∠M+∠MDE=2∠M=2∠EFB.【点睛】本题考查了平行四边形的判定与性质,全等三角形的判定与性质,等腰三角形和直角三角形的性质,熟练掌握平行四边形的判定定理,利用“中线倍长法”构造全等三角形是解题的关键.20、(1)-5;(2)(x-2)(x+1)(x-1)【分析】(1)根据乘方的意义、立方根的定义和算术平方根的定义计算即可;(2)先提取公因数,然后利用平方差公式因式分解即可.【详解】解:(1)解:原式=1-4-2=-5(2)解:原式=(x-2)(x2-1)=(x-2)(x+1)(x-1)【点睛】此题考查的是实数的混合运算和因式分解,掌握乘方的意义、立方根的定义、算术平方根的定义、利用提公因式法和公式法因式分解是解决此题的关键.21、(1)AB的长为10;(2)△ADE的面积为36;(3)M点的坐标(4,-4)或(12,12)【分析】(1)利用直线AB的函数解析式求出A、B坐标,再利用勾股定理求出AB即可;(2)由折叠知∠B=∠C,∠BDA=∠CDA,由∠BAO=∠CAE证得∠AEC=∠AOB=90º,利用角平分线的性质得到OA=AE,进而证得Rt△AOD≌Rt△AED,利用全等三角形的性质和三角形的面积公式求解即可;(3)由待定系数法求出直线AB的解析式,设点M的坐标,根据折叠性质知MB=MC,根据题意,有,代入点M坐标解方程即可求解.【详解】(1)当x=0时,y=8,∴B(0,8),当y=0时,由得,x=6,∴A(6,0),在Rt△AOB中,OA=6,OB=8,由勾股定理得:AB==10;(2)由折叠性质得:∠B=∠C,∠BDA=∠CDA,AC=AB=10,BD=DC,∴OC=16,设OD=x,则DC=BD=x+8,在Rt△COD中,由勾股定理得:,解得:OD=12,∵∠BAO=∠CAE,且∠B+∠BAO+∠AOB=∠C+∠CAE+∠AEC=180º,∴∠AEC=∠AOB=90º,∴∠AED=∠AOD=90º,又∵∠BDA=∠CDA,∴OA=AE=3,在Rt△AOD和Rt△AED中,,∴Rt△AOD≌Rt△AED,∴;(3)设直线AD的解析式为y=kx+b,由(2)中OD=12得:点D坐标为(0,-12),将点D(0,-12)、A(6,0)代入,得:,解得:,∴直线AD的解析式为y=2x-12,∵点M为直线AD上一点,故设点M坐标为(m,2m-12),由折叠性质得:MB=MC,且△MBC为等腰直角三角形,∴∠BMC=90º在Rt△BOC和Rt△BMC中,由勾股定理得:,,即,∴,即,解得:m=4或m=12,则满足条件的点M坐标为(4,-4)或(12,12).【点睛】本题主要考查一次函数的图象与性质、求一次函数解析式、勾股定理、折叠的性质、角平分线的性质定理、全等三角形的判定与性质、一元二次方程等知识,解答的关键是认真审题,寻找相关信息的关联点,利用数形结合法、待定系数法等思想方法确定解题思路,进而推理、探究、发现和计算.22、详见解析【分析】先根据勾股定理求出AE和BE,求出AB,根据勾股逆定理的逆定理可证△ABC是直角三角形.【详解】证明:DE是AB边上的高,∴∠AED=∠BED=90°,在Rt△ADE中,在Rt△BDE中,∴AB=2+8=1.在△ABC中,由AB=1,AC=6,BC=8,∵∴∴△ABC是直角三角形.【点睛】本题考查了勾股定理和勾股定理的逆定理,正确理解定理的内容是关键.23、(1):m<且m≠﹣;(1)n=1或n=.【解析】考虑分式的分母不为0,即分式必须有意义;(1)表示出分式方程的解,由解为负数确定出m的范围即可;(1)分式方程去分母转化为整式方程,根据分式方程无解,得到有增根或整式方程无解,确定出n的范围即可.【详解】请回答:小明没有考虑分式的分母不为0(或分式必须有意义)这个条件;(1)解关于x的分式方程得,x=,∵方程有解,且解为负数,∴,解得:m<且m≠-;(1)分式方程去分母得:3-1x+nx-1=-x+3,即(n-1)x=1,由分式方程无解,得到x-3=0,即x=3,代入整式方程得:n=;当n-1=0时,整式方程无解,此时n=1,综上,n=1或n=.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.24、(1);证明见解析;(2)A.,B..【分析】(1)由AB∥CD,可知∠BEF与∠DFE互补,由角平分线的性质可得,由三角形内角和定理可得∠G=,则;(2)A,由(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度航空公司飞行器维修合同3篇
- 2024年度知识产权许可合同:某专利持有者与使用方之间的知识产权许可协议3篇
- 二零二四年度某影视公司与特效公司就电影特效制作的合同3篇
- 2024年度建筑工程施工总包合同详细条款3篇
- 应急救援设备租赁合同
- 建筑检测工程合同
- 2024年度柑橘果实品质检测与评估合同2篇
- 2024年度终止甲乙租房合同解除协议书5篇
- 鞋业生产合同管理方案
- 乡村别墅二手房买卖合同模板
- 2024中国烟草总公司合肥设计院招聘6人笔试易考易错模拟试题(共500题)试卷后附参考答案
- 中学生校园食品安全教育
- 冬季七防知识培训
- 2 让它们立起来 说课稿-2024-2025学年科学一年级上册青岛版
- 国家公务员考试(面试)试题及解答参考(2024年)
- 2024城市公共服务智能垃圾分类系统建设合同
- 2024-2030年中国重力压铸零件行业产销形势与需求前景预测报告
- 2024-2030年中国海上风力发电行业发展状况及投资策略规划分析报告
- 高三第一学期家长会
- 第三单元参考活动1《续一个南社的梦》说课稿 2023-2024学年苏少版初中综合实践活动八年级上册
- 保安人员安全知识培训内容
评论
0/150
提交评论