2022届天津市宁河县市级名校中考数学模拟预测题含解析_第1页
2022届天津市宁河县市级名校中考数学模拟预测题含解析_第2页
2022届天津市宁河县市级名校中考数学模拟预测题含解析_第3页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022中考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1.如果,那么()A. B. C. D.2.2018年春运,全国旅客发送量达29.8亿人次,用科学记数法表示29.8亿,正确的是()A.29.8×109 B.2.98×109 C.2.98×1010 D.0.298×10103.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n、m的大矩形,则图中阴影部分的周长是()A.6(m﹣n) B.3(m+n) C.4n D.4m4.如图,在⊙O中,直径AB⊥弦CD,垂足为M,则下列结论一定正确的是()A.AC=CD B.OM=BM C.∠A=∠ACD D.∠A=∠BOD5.已知正多边形的一个外角为36°,则该正多边形的边数为().A.12 B.10 C.8 D.66.如图,将△ABC沿着DE剪成一个小三角形ADE和一个四边形D'E'CB,若DE∥BC,四边形D'E'CB各边的长度如图所示,则剪出的小三角形ADE应是()A. B. C. D.7.已知二次函数的图象如图所示,则下列结论:①ac>0;②a-b+c<0;

当时,;,其中错误的结论有A.②③ B.②④ C.①③ D.①④8.若,则的值为()A.12 B.2 C.3 D.09.如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm,将线段DC沿CB方向平移7cm得到线段EF,点E、F分别落在边AB、BC上,则△EBF的周长是()cm.A.7 B.11 C.13 D.1610.如图所示,在方格纸上建立的平面直角坐标系中,将△ABC绕点O按顺时针方向旋转90°,得到△A′B′O,则点A′的坐标为()A.(3,1) B.(3,2) C.(2,3) D.(1,3)二、填空题(本大题共6个小题,每小题3分,共18分)11.5月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施.6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂5月份的用水量各是多少.设甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据题意列关于x,y的方程组为__.12.若反比例函数y=的图象位于第一、三象限,则正整数k的值是_____.13.观察下列等式:第1个等式:a1=;第2个等式:a2=;第3个等式:a3=;…请按以上规律解答下列问题:(1)列出第5个等式:a5=_____;(2)求a1+a2+a3+…+an=,那么n的值为_____.14.如图,在△ABC中,∠C=90°,D是AC上一点,DE⊥AB于点E,若AC=8,BC=6,DE=3,则AD的长为________.15.分解因式:=______.16.二次函数的图象与y轴的交点坐标是________.三、解答题(共8题,共72分)17.(8分)一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为.求口袋中黄球的个数;甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;18.(8分)反比例函数的图象经过点A(2,3).(1)求这个函数的解析式;(2)请判断点B(1,6)是否在这个反比例函数的图象上,并说明理由.19.(8分)如图,△ABC与△A1B1C1是位似图形.(1)在网格上建立平面直角坐标系,使得点A的坐标为(-6,-1),点C1的坐标为(-3,2),则点B的坐标为____________;(2)以点A为位似中心,在网格图中作△AB2C2,使△AB2C2和△ABC位似,且位似比为1∶2;(3)在图上标出△ABC与△A1B1C1的位似中心P,并写出点P的坐标为________,计算四边形ABCP的周长为_______.20.(8分)先化简,再求值:,其中满足.21.(8分)直角三角形ABC中,,D是斜边BC上一点,且,过点C作,交AD的延长线于点E,交AB延长线于点F.求证:;若,,过点B作于点G,连接依题意补全图形,并求四边形ABGD的面积.22.(10分)如图,是菱形的对角线,,(1)请用尺规作图法,作的垂直平分线,垂足为,交于;(不要求写作法,保留作图痕迹)在(1)条件下,连接,求的度数.23.(12分)如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B的左侧),C为顶点,直线y=x+m经过点A,与y轴交于点D.求线段AD的长;平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.24.学校决定在学生中开设:A、实心球;B、立定跳远;C、跳绳;D、跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图,请结合图中的信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整.(3)若调查到喜欢“跳绳”的5名学生中有2名男生,3名女生,现从这5名学生中任意抽取2名学生,请用画树状图或列表法求出刚好抽到不同性别学生的概率.

参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】试题分析:根据二次根式的性质,由此可知2-a≥0,解得a≤2.故选B点睛:此题主要考查了二次根式的性质,解题关键是明确被开方数的符号,然后根据性质可求解.2、B【解析】

根据科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,且为这个数的整数位数减1,由此即可解答.【详解】29.8亿用科学记数法表示为:29.8亿=2980000000=2.98×1.故选B.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3、D【解析】

解:设小长方形的宽为a,长为b,则有b=n-3a,阴影部分的周长:2(m-b)+2(m-3a)+2n=2m-2b+2m-6a+2n=4m-2(n-3a)-6a+2n=4m-2n+6a-6a+2n=4m.故选D.4、D【解析】

根据垂径定理判断即可.【详解】连接DA.∵直径AB⊥弦CD,垂足为M,∴CM=MD,∠CAB=∠DAB.∵2∠DAB=∠BOD,∴∠CAD=∠BOD.故选D.【点睛】本题考查的是垂径定理和圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.5、B【解析】

利用多边形的外角和是360°,正多边形的每个外角都是36°,即可求出答案.【详解】解:360°÷36°=10,所以这个正多边形是正十边形.故选:B.【点睛】本题主要考查了多边形的外角和定理.是需要识记的内容.6、C【解析】

利用相似三角形的性质即可判断.【详解】设AD=x,AE=y,∵DE∥BC,∴△ADE∽△ABC,∴,∴,∴x=9,y=12,故选:C.【点睛】考查平行线的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7、C【解析】

①根据图象的开口方向,可得a的范围,根据图象与y轴的交点,可得c的范围,根据有理数的乘法,可得答案;

②根据自变量为-1时函数值,可得答案;

③根据观察函数图象的纵坐标,可得答案;

④根据对称轴,整理可得答案.【详解】图象开口向下,得a<0,

图象与y轴的交点在x轴的上方,得c>0,ac<,故①错误;

②由图象,得x=-1时,y<0,即a-b+c<0,故②正确;

③由图象,得

图象与y轴的交点在x轴的上方,即当x<0时,y有大于零的部分,故③错误;

④由对称轴,得x=-=1,解得b=-2a,

2a+b=0

故④正确;

故选D.【点睛】考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.8、A【解析】

先根据得出,然后利用提公因式法和完全平方公式对进行变形,然后整体代入即可求值.【详解】∵,∴,∴.故选:A.【点睛】本题主要考查整体代入法求代数式的值,掌握完全平方公式和整体代入法是解题的关键.9、C【解析】

直接利用平移的性质得出EF=DC=4cm,进而得出BE=EF=4cm,进而求出答案.【详解】∵将线段DC沿着CB的方向平移7cm得到线段EF,∴EF=DC=4cm,FC=7cm,∵AB=AC,BC=12cm,∴∠B=∠C,BF=5cm,∴∠B=∠BFE,∴BE=EF=4cm,∴△EBF的周长为:4+4+5=13(cm).故选C.【点睛】此题主要考查了平移的性质,根据题意得出BE的长是解题关键.10、D【解析】

解决本题抓住旋转的三要素:旋转中心O,旋转方向顺时针,旋转角度90°,通过画图得A′.【详解】由图知A点的坐标为(-3,1),根据旋转中心O,旋转方向顺时针,旋转角度90°,画图,从而得A′点坐标为(1,3).故选D.二、填空题(本大题共6个小题,每小题3分,共18分)11、x+y=200(1-15%)x+(1-10%)y=174【解析】

甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据甲、乙两厂5月份用水量与6月份用水量列出关于x、y的方程组即可.【详解】甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据题意得:x+y=200(1-15%)x+(1-10%)y=174故答案为:x+y=200(1-15%)x+(1-10%)y=174【点睛】本题考查了二元一次方程组的应用,弄清题意,找准等量关系是解题的关键.12、1.【解析】

由反比例函数的性质列出不等式,解出k的范围,在这个范围写出k的整数解则可.【详解】解:∵反比例函数的图象在一、三象限,∴2﹣k>0,即k<2.又∵k是正整数,∴k的值是:1.故答案为:1.【点睛】本题考查了反比例函数的性质:当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.13、49【解析】

(1)观察等式可得然后根据此规律就可解决问题;

(2)只需运用以上规律,采用拆项相消法即可解决问题.【详解】(1)观察等式,可得以下规律:,∴(2)解得:n=49.故答案为:49.【点睛】属于规律型:数字的变化类,观察题目,找出题目中数字的变化规律是解题的关键.14、1【解析】

如图,由勾股定理可以先求出AB的值,再证明△AED∽△ACB,根据相似三角形的性质就可以求出结论.【详解】在Rt△ABC中,由勾股定理.得AB==10,∵DE⊥AB,∴∠AED=∠C=90°.∵∠A=∠A,∴△AED∽△ACB,∴,∴,∴AD=1.故答案为1【点睛】本题考查了勾股定理的运用,相似三角形的判定及性质的运用,解答时求出△AED∽△ACB是解答本题的关键.15、x(x+2)(x﹣2).【解析】试题分析:==x(x+2)(x﹣2).故答案为x(x+2)(x﹣2).考点:提公因式法与公式法的综合运用;因式分解.16、【解析】

求出自变量x为1时的函数值即可得到二次函数的图象与y轴的交点坐标.【详解】把代入得:,∴该二次函数的图象与y轴的交点坐标为,故答案为.【点睛】本题考查了二次函数图象上点的坐标特征,在y轴上的点的横坐标为1.三、解答题(共8题,共72分)17、(1)1;(2)【解析】

(1)设口袋中黄球的个数为x个,根据从中任意摸出一个球是红球的概率为和概率公式列出方程,解方程即可求得答案;(2)根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出都是红球的情况,再利用概率公式即可求得答案;【详解】解:(1)设口袋中黄球的个数为个,根据题意得:解得:=1经检验:=1是原分式方程的解∴口袋中黄球的个数为1个(2)画树状图得:∵共有12种等可能的结果,两次摸出都是红球的有2种情况∴两次摸出都是红球的概率为:.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.18、(1)y=(2)点B(1,6)在这个反比例函数的图象上【解析】

(1)设反比例函数的解析式是y=,只需把已知点的坐标代入,即可求得函数解析式;(2)根据反比例函数图象上点的坐标特征进行判断.【详解】设反比例函数的解析式是,则,得.则这个函数的表达式是;因为,所以点不在函数图象上.【点睛】本题考查了待定系数法求反比例函数解析式:设出含有待定系数的反比例函数解析式y=(k为常数,k≠0);把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;解方程,求出待定系数;写出解析式.也考查了反比例函数图象上点的坐标特征.19、(1)作图见解析;点B的坐标为:(﹣2,﹣5);(2)作图见解析;(3)【解析】分析:(1)直接利用已知点位置得出B点坐标即可;(2)直接利用位似图形的性质得出对应点位置进而得出答案;(3)直接利用位似图形的性质得出对应点交点即可位似中心,再利用勾股定理得出四边形ABCP的周长.详解:(1)如图所示:点B的坐标为:(﹣2,﹣5);故答案为(﹣2,﹣5);(2)如图所示:△AB2C2,即为所求;(3)如图所示:P点即为所求,P点坐标为:(﹣2,1),四边形ABCP的周长为:+++=4+2+2+2=6+4.故答案为6+4.点睛:本题主要考查了位似变换以及勾股定理,正确利用位似图形的性质分析是解题的关键.20、1【解析】试题分析:原式第一项括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分后,两项通分并利用同分母分式的减法法则计算得到最简结果,已知方程变形后代入计算即可求出值.试题解析:原式=∵x2−x−1=0,∴x2=x+1,则原式=1.21、(1)证明见解析;(2)补图见解析;.【解析】

根据等腰三角形的性质得到,等量代换得到,根据余角的性质即可得到结论;根据平行线的判定定理得到AD∥BG,推出四边形ABGD是平行四边形,得到平行四边形ABGD是菱形,设AB=BG=GD=AD=x,解直角三角形得到,过点B作于H,根据平行四边形的面积公式即可得到结论.【详解】解:,,,,,,,,;补全图形,如图所示:,,,,,,,,,且,,,,四边形ABGD是平行四边形,,平行四边形ABGD是菱形,设,,,,过点B作于H,..故答案为(1)证明见解析;(2)补图见解析;.【点睛】本题考查等腰三角形的性质,平行四边形的判定和性质,菱形的判定和性质,解题的关键是正确的作出辅助线.22、(1)答案见解析;(2)45°.【解析】

(1)分别以A、B为圆心,大于长为半径画弧,过两弧的交点作直线即可;(2)根据∠DBF=∠ABD﹣∠ABF计算即可;【详解】(1)如图所示,直线EF即为所求;(2)∵四边形ABCD是菱形,∴∠ABD=∠DBC∠ABC=75°,DC∥AB,∠A=∠C,∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°.∵EF垂直平分线段AB,∴AF=FB,∴∠A=∠FBA=30°,∴∠DBF=∠ABD﹣∠FBE=45°.【点睛】本题考查了线段的垂直平分线作法和性质,菱形的性质等知识,解题的关键是灵活运用所学知识解决问题.23、(1)1;(1)y=x1﹣4x+1或y=x1+6x+1.【解析】

(1)解方程求出点A的坐标,根据勾股定理计算即可;(1)设新抛物线对应的函数表达式为:y=x1+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论