下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
平行四边形的判定基础练习平行四边形的判定基础练习平行四边形的判定基础练习V:1.0精细整理,仅供参考平行四边形的判定基础练习日期:20xx年X月平行四边形的判定-2一、解答题(共10小题)(选答题,不自动判卷)1.如图,点D、C在BF上,AC∥DE,∠A=∠E,BD=CF,(1)求证:AB=EF.(2)连接AF,BE,猜想四边形ABEF的形状,并说明理由.2.如图,在四边形ABCD中,∠B=∠D,∠1=∠2,求证:四边形ABCD是平行四边形.3.如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:四边形BCEF是平行四边形.4.如图,A、D、F、B在同一直线上,AE=BC,且AE∥BC,AD=BF.(1)求证:△AEF≌△BCD;(2)连ED,CF,则四边形EDCF是.5、如图,平行四边形ABCD中,BE=DF,AG=CH。求证:四边形GEHF是平行四边形。6.如图,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等边三角形,E是AB的中点,连接CE并延长交AD于F.求证:(1)△AEF≌△BEC;(2)四边形BCFD是平行四边形.7.已知:如图,在四边形ABCD中,AB∥CD,E,F为对角线AC上两点,且AE=CF,DF∥BE.求证:四边形ABCD为平行四边形.8.如图,AB∥CD,AB=CD,点E、F在BC上,且BE=CF.(1)求证:△ABE≌△DCF;(2)试证明:以A、F、D、E为顶点的四边形是平行四边形.9.如图,已知BE∥DF,∠ADF=∠CBE,AF=CE,求证:四边形DEBF是平行四边形.10.如图,已知:AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.求证:四边形BECF是平行四边形.
【考点训练】平行四边形的判定-2参考答案与试题解析一、解答题(共10小题)(选答题,不自动判卷)1.如图,点D、C在BF上,AC∥DE,∠A=∠E,BD=CF,(1)求证:AB=EF.(2)连接AF,BE,猜想四边形ABEF的形状,并说明理由.【分析】(1)利用AAS证明△ABC≌△EFD,再根据全等三角形的性质可得AB=EF;(2)首先根据全等三角形的性质可得∠B=∠F,再根据内错角相等两直线平行可得到AB∥EF,又AB=EF,可证出四边形ABEF为平行四边形.【解答】(1)证明:∵AC∥DE,∴∠ACD=∠EDF,∵BD=CF,∴BD+DC=CF+DC,即BC=DF,又∵∠A=∠E,∴△ABC≌△EFD(AAS),∴AB=EF;(2)猜想:四边形ABEF为平行四边形,理由如下:由(1)知△ABC≌△EFD,∴∠B=∠F,∴AB∥EF,又∵AB=EF,∴四边形ABEF为平行四边形.【点评】此题主要考查了全等三角形的判定与性质,平行四边形的判定,解决问题的关键是证明△ABC≌△EFD.2.如图,在四边形ABCD中,∠B=∠D,∠1=∠2,求证:四边形ABCD是平行四边形.【分析】根据三角形内角和定理求出∠DAC=∠ACB,根据平行线的判定推出AD∥BC,AB∥CD,根据平行四边形的判定推出即可.【解答】证明:∵∠1+∠B+∠ACB=180°,∠2+∠D+∠CAD=180°,∠B=∠D,∠1=∠2,∴∠DAC=∠ACB,∴AD∥BC,∵∠1=∠2,∴AB∥CD,∴四边形ABCD是平行四边形.【点评】本题考查了平行线的判定和平行四边形的判定的应用,主要考查学生的推理能力.3.如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:四边形BCEF是平行四边形.【分析】首先证明△AFB≌△DCE(SAS),进而得出FB=CE,FB∥CE,进而得出答案.【解答】证明:在△AFB和△DCE中,,∴△AFB≌△DCE(SAS),∴FB=CE,∴∠AFB=∠DCE,∴FB∥CE,∴四边形BCEF是平行四边形.【点评】此题主要考查了平行四边形的判定以及全等三角形的判定与性质,得出△AFB≌△DCE是解题关键.4.如图,A、D、F、B在同一直线上,AE=BC,且AE∥BC,AD=BF.(1)求证:△AEF≌△BCD;(2)连ED,CF,则四边形EDCF是.(从平行四边形,矩形,菱形,正方形中选填).【分析】(1)根据AE∥BC可得∠A=∠B,再由AD=BF可得AF=BD,再加上条件AE=CB,可根据SAS定理证明△AEF≌△BCD;(2)根据△AEF≌△BCD,可得EF=CD,∠EFA=∠CDB,进而证明出EF∥DC,再根据一组对边平行且相等的四边形EDCF是平行四边形.【解答】解:(1)证明:∵AE∥BC,∴∠A=∠B,∵AD=BF,∴AF=DB,∵AE=BC,在△AEF和△BCD中,∴△AEF≌△BCD(SAS);(2)平行四边形.∵△AEF≌△BCD,∴EF=CD,∠EFA=∠CDB,∴EF∥DC,∴四边形EDCF是平行四边形.【点评】此题主要考查了全等三角形的判定与性质,以及平行四边形的判定,关键是掌握一组对边平行且相等的四边形是平行四边形.5.如图,在▱ABCD中,AC交BD于点O,点E,点F分别是OA,OC的中点,请判断线段BE,DF的位置关系和数量关系,并说明你的结论.【分析】根据平行四边形的性质对角线互相平分得出OA=OC,OB=OD,利用中点的意义得出OE=OF,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定BFDE是平行四边形,从而得出BE=DF,BE∥DF.【解答】解:BE=DF,BE∥DF因为ABCD是平行四边形,所以OA=OC,OB=OD,因为E,F分别是OA,OC的中点,所以OE=OF,所以BFDE是平行四边形,所以BE=DF,BE∥DF【点评】主要考查了平行四边形的基本性质和判定定理的运用.性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.6.如图,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等边三角形,E是AB的中点,连接CE并延长交AD于F.求证:(1)△AEF≌△BEC;(2)四边形BCFD是平行四边形.【分析】(1)利用等边三角形的性质得出∠DAB=60°,即可得出∠ABC=60°,进而求出△AEF≌△BEC(ASA);(2)利用平行线的判定方法以及直角三角形的性质得出CF∥BD,进而求出答案.【解答】证明(1)∵E是AB中点,∴AE=BE,∵△ABD是等边三角形,∴∠DAB=60°,∵∠CAB=30°,∠ACB=90°,∴∠ABC=60°,在△AEF和△BEC中,∴△AEF≌△BEC(ASA);(2)∵∠DAC=∠DAB+∠BAC,∠DAB=60°,∠CAB=30°,∴∠DAC=90°,∴AD∥BC,∵E是AB的中点,∠ACB=90°,∴EC=AE=BE,∴∠ECA=30°,∠FEA=60°,∴∠EFA=∠BDA=60°,∴CF∥BD,∴四边形BCFD是平行四边形.【点评】此题主要考查了平行四边形的判定以及全等三角形的判定方法,得出∠ABC=60°是解题关键.7.已知:如图,在四边形ABCD中,AB∥CD,E,F为对角线AC上两点,且AE=CF,DF∥BE.求证:四边形ABCD为平行四边形.【分析】首先证明△AEB≌△CFD可得AB=CD,再由条件AB∥CD可利用一组对边平行且相等的四边形是平行四边形证明四边形ABCD为平行四边形.【解答】证明:∵AB∥CD,∴∠DCA=∠BAC,∵DF∥BE,∴∠DFA=∠BEC,∴∠AEB=∠DFC,在△AEB和△CFD中,∴△AEB≌△CFD(ASA),∴AB=CD,∵AB∥CD,∴四边形ABCD为平行四边形.【点评】此题主要考查了平行四边形的判定,关键是掌握一组对边平行且相等的四边形是平行四边形.8.如图,AB∥CD,AB=CD,点E、F在BC上,且BE=CF.(1)求证:△ABE≌△DCF;(2)试证明:以A、F、D、E为顶点的四边形是平行四边形.【分析】(1)由全等三角形的判定定理SAS证得△ABE≌△DCF;(2)利用(1)中的全等三角形的对应角相等证得∠AEB=∠DFC,则∠AEF=∠DFE,所以根据平行线的判定可以证得AE∥DF.由全等三角形的对应边相等证得AE=DF,则易证得结论.【解答】证明:(1)如图,∵AB∥CD,∴∠B=∠C.∵在△ABE与△DCF中,,∴△ABE≌△DCF(SAS);(2)如图,连接AF、DE.由(1)知,△ABE≌△DCF,∴AE=DF,∠AEB=∠DFC,∴∠AEF=∠DFE,∴AE∥DF,∴以A、F、D、E为顶点的四边形是平行四边形.【点评】本题考查了平行四边形的判定、全等三角形的判定与性质.在证明(2)题时,利用了“一组对边平行且相等的四边形是平行四边形”的判定定理.9.如图,已知BE∥DF,∠ADF=∠CBE,AF=CE,求证:四边形DEBF是平行四边形.【分析】首先根据平行线的性质可得∠BEC=∠DFA,再加上条件∠ADF=∠CBE,AF=CE,可证明△ADF≌△CBE,再根据全等三角形的性质可得BE=DF,根据一组对边平行且相等的四边形是平行四边形进行判定即可.【解答】证明:∵BE∥DF,∴∠BEC=∠DFA,在△ADF和△CBE中,∴△ADF≌△CBE(AAS),∴BE=DF,又∵BE∥DF,∴四边形DEBF是平行四边形.【点评】此题主要考查了平行四边形的判定,关键是掌握一组对边平行且相等的四边形是平行四边形.10.如图,已知:AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.求证:四边形BECF是平行四边形.【分析】通过全等三角形(△AEB≌△DFC)的对应边相等证得BE=CF,由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 语文《谈中国诗》说课稿
- 证券银证转账协议三篇
- 系统架构规划与优化培训
- 2024年商品化色浆项目建议书
- 监理期限合同范本
- 明星买房合同范本
- 河南省三门峡市(2024年-2025年小学五年级语文)统编版专题练习(下学期)试卷及答案
- 外包安保合同范本
- 电商平台信息保护管理制度
- 电力行业内部责任追究制度创新
- 专病数据模块及数据库建设需求
- 一老一小交通安全宣传
- 城市社区居家养老服务体系建设研究-以我国椒江区、田家庵区为例的开题报告
- 重点部位感染与预防控制
- 高校快递包装回收现状分析及对策-以广东省中山市三大高校为例
- 初创企业财务管理计划书
- 新民事诉讼书范文追债通用21篇
- 100ml生理盐水的配制讲解
- 国家开放大学《Python语言基础》实验3:超市数据统计分析参考答案
- 加油站消防安全基本常识
- 热力集团招聘试题
评论
0/150
提交评论