版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021年广东省深圳市某学校数学高职单招试题(含答案)学校:________班级:________姓名:________考号:________
一、单选题(10题)1.A.B.C.D.
2.已知a=(1,2),则2a=()A.(1,2)B.(2,4)C.(2,1)D.(4,2)
3.AB>0是a>0且b>0的()A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件
4.若函数f(x-)=x2+,则f(x+1)等于()A.(x+1)2+
B.(x-)2+
C.(x+1)2+2
D.(x+1)2+1
5.复数z=2i/1+i的共轭复数是()A.1+iB.1-iC.1/2+1/2iD.1/2-1/2i
6.执行如图所示的程序框图,输出n的值为()A.19B.20C.21D.22
7.已知{an}是等差数列,a1+a7=-2,a3=2,则{an}的公差d=()A.-1B.-2C.-3D.-4
8.从1,2,3,4,5,6这6个数中任取两个数,则取出的两数都是偶数的概率是()A.1/3B.1/4C.1/5D.1/6
9.函数y=log2x的图象大致是()A.
B.
C.
D.
10.A.B.C.D.
二、填空题(10题)11.的值是
。
12.
13.
14.设平面向量a=(2,sinα),b=(cosα,1/6),且a//b,则sin2α的值是_____.
15.某田径队有男运动员30人,女运动员10人.用分层抽样的方法从中抽出一个容量为20的样本,则抽出的女运动员有______人.
16.5个人站在一其照相,甲、乙两人间恰好有一个人的排法有_____种.
17.设集合,则AB=_____.
18.设A=(-2,3),b=(-4,2),则|a-b|=
。
19.已知正实数a,b满足a+2b=4,则ab的最大值是____________.
20.已知_____.
三、计算题(5题)21.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.
22.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。
23.在等差数列{an}中,前n项和为Sn
,且S4
=-62,S6=-75,求等差数列{an}的通项公式an.
24.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.
25.已知函数y=cos2x+3sin2x,x∈R求:(1)函数的值域;(2)函数的最小正周期。
四、证明题(5题)26.己知正方体ABCD-A1B1C1D1,证明:直线AC1与直线A1D1所成角的余弦值为.
27.
28.若x∈(0,1),求证:log3X3<log3X<X3.
29.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.
30.己知x∈(1,10),A=lg2x,B=lgx2,证明:A<B.
五、简答题(5题)31.如图,在直三棱柱中,已知(1)证明:AC丄BC;(2)求三棱锥的体积.
32.已知双曲线C的方程为,离心率,顶点到渐近线的距离为,求双曲线C的方程
33.已知椭圆和直线,求当m取何值时,椭圆与直线分别相交、相切、相离。
34.证明上是增函数
35.据调查,某类产品一个月被投诉的次数为0,1,2的概率分别是0.4,0.5,0.1,求该产品一个月内被投诉不超过1次的概率
六、综合题(5题)36.己知点A(0,2),5(-2,-2).(1)求过A,B两点的直线l的方程;(2)己知点A在椭圆C:上,且(1)中的直线l过椭圆C的左焦点。求椭圆C的标准方程.
37.己知椭圆与抛物线y2=4x有共同的焦点F2,过椭圆的左焦点F1作倾斜角为的直线,与椭圆相交于M、N两点.求:(1)直线MN的方程和椭圆的方程;(2)△OMN的面积.
38.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)
39.
(1)求该直线l的方程;(2)求圆心该直线上且与两坐标轴相切的圆的标准方程.
40.
参考答案
1.D
2.B平面向量的线性运算.=2(1,2)=(2,4).
3.Ba大于0且b大于0可得到到ab大于0,但是反之不成立,所以是必要条件。
4.C由题可知,f(0)=2=f(-1+1),因此x=-1时,函数值为2,所以正确答案为C。
5.B共轭复数的计算.z=2i/1+i=2i(1-i)f(1+i)(1-i)=1+i复数z=2i/1的共扼复数是1-i.
6.B程序框图的运算.模拟执行如图所示的程序框图知,该程序的功能是计算S=1+2+...+n≥210时n的最小自然数值,由S=n(n+1)/2≥210,解得n≥20,∴输出n的值为20.
7.C等差数列的定义.a1+a7=a32d+a3+4d=2a3+2d,2a3+2d=-2,d=-3.
8.C本题主要考查随机事件及其概率.任取两数都是偶数,共有C32=3种取法,所有取法共有C62=15种,故概率为3/15=1/5.
9.C对数函数的图象和基本性质.
10.B
11.
,
12.2/5
13.
14.2/3平面向量的线性运算,三角函数恒等变换.因为a//b,所以2x1/6-sinαcosα=0即sinαcosα=1/3.所以sin2α=2sinαcosα=2/3.
15.5分层抽样方法.因为男运动员30人,女运动员10人,所以抽出的女运动员有10f(10+30)×20=1/4×20=5人.
16.36,
17.{x|0<x<1},
18.
。a-b=(2,1),所以|a-b|=
19.2基本不等式求最值.由题
20.-1,
21.
22.
23.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
24.
25.
26.
27.
28.
29.
∴PD//平面ACE.
30.证明:考虑对数函数y=lgx的限制知
:当x∈(1,10)时,y∈(0,1)A-B=lg2
x-lgx2
=lgx·lgx-2lgx=lgx(lgx-2)∵lgx∈(0,1)∴lgx-2<0A-B<0∴A<B
31.
32.
33.∵∴当△>0时,即,相交当△=0时,即,相切当△<0时,即,相离
34.证明:任取且x1<x2∴即∴在是增函数
35.设事件A表示“一个月内被投诉的次数为0”,事件B表示“一个月内被投诉的次数为1”∴P(A+B)=P(A)+P(B)=0.4+0.5=0.9
36.解:(1)直线l过A(0,2),B(-2,-2)两点,根据斜率公式可得斜率因此直线l的方程为y-2=2x即2x-y+2=0⑵由⑴知,直线l的方程为2x-y+2=0,因此直线l与x轴的交点为(-1,0).又直线l过椭圆C的左焦点,故椭圆C的左焦点为(-1,0).设椭圆C的焦距为2c,则有c=1因为点A(0,2)在椭圆C:上所以b=2根据a2=b2+c2,有a=故椭圆C的标准方程为
37.
38.
39.解:(1)斜率k=5/3,设直线l的方程5x-3y+m=0,直线l经过点(0,-8/3),所以m=8,直线l的方程为5x-3y-8=0。(2)设
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版返点合同协议书
- 2024赠送房地产投资房产协议范本3篇
- 2025年度医疗设备制造加工承包合同范本3篇
- 2024物业租赁合同规定书
- 2024证券公司资产托管业务服务合同
- 临床微生物标本的采集方法与运送课件
- 2025年度互联网公司100%股权转让协议书3篇
- 2024版海洋工程勘探与开发合作合同2篇
- 2024西安市二手房交易资金监管服务合同
- 珠宝销售顾问月工作总结
- 光伏电站运维课件
- 江苏省苏州市2023-2024学年高一上学期期末学业质量阳光指标调研试题+物理 含解析
- 农业合作社线上线下营销方案
- 电信公司网络安全管理制度
- 安全生产标准化知识培训考核试卷
- 中考英语复习分析如何写英语高分作文课件
- 自然科学基金项目申报书(模板)
- 中华诗词之美学习通超星期末考试答案章节答案2024年
- GB/T 44273-2024水力发电工程运行管理规范
- 浙江省杭州市余杭区2023-2024学年二年级上学期期末语文试题
- 罗定市2024届小升初必考题数学检测卷含解析
评论
0/150
提交评论