版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021年安徽省蚌埠市某学校数学高职单招模拟考试(含答案)学校:________班级:________姓名:________考号:________
一、单选题(10题)1.在正方体ABCD-A1B1C1D1中,二面角D1-AB-D的大小是()A.30°B.60°C.45°D.90°
2.已知a=(1,-1),b=(-1,2),则(2a+b)×a=()A.1B.-1C.0D.2
3.用简单随机抽样的方法从含有100个个体的总体中依次抽取一个容量为5的样本,则个体m被抽到的概率为()A.1/100B.1/20C.1/99D.1/50
4.将函数图像上所有点向左平移个单位长度,再把所得图像上各点的横坐标扩大到原来的2倍(纵向不变),则所得到的图像的解析为()A.
B.
C.
D.
5.A.B.C.D.
6.已知a=(4,-4),点A(1,-1),B(2,-2),那么()A.a=ABB.a⊥ABC.|a|=|AB|D.a//AB
7.设集合U={1,2,3,4,5,6},M={1,3,5},则C∪M=()A.{2,4,6}B.{1,3,5}C.{1,2,4}D.U
8.若sin(π/2+α)=-3/5,且α∈[π/2,π]则sin(π-2α)=()A.24/25B.12/25C.-12/25D.-24/25
9.x2-3x-4<0的等价命题是()A.x<-1或x>4B.-1<x<4C.x<-4或x>1D.-4<x<1
10.已知a∈(π,3/2π),cosα=-4/5,则tan(π/4-α)等于()A.7B.1/7C.-1/7D.-7
二、填空题(10题)11.正方体ABCD-A1B1C1D1中AC与AC1所成角的正弦值为
。
12.若ABC的内角A满足sin2A=则sinA+cosA=_____.
13.log216+cosπ+271/3=
。
14.某工厂生产A、B、C三种不同型号的产品,产品数量之比依次为2:3:4,现用分层抽样方法抽出一个容量为n的样本,样本中A种型号产品有6件,那么n=
。
15.
16.以点(1,2)为圆心,2为半径的圆的方程为_______.
17.双曲线x2/4-y2/3=1的离心率为___.
18.若f(X)=,则f(2)=
。
19.
20.
三、计算题(5题)21.在等差数列{an}中,前n项和为Sn
,且S4
=-62,S6=-75,求等差数列{an}的通项公式an.
22.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.
23.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。
24.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.
25.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.
四、证明题(5题)26.长、宽、高分别为3,4,5的长方体,沿相邻面对角线截取一个三棱锥(如图).求证:剩下几何体的体积为三棱锥体积的5倍.
27.△ABC的三边分别为a,b,c,为且,求证∠C=
28.己知正方体ABCD-A1B1C1D1,证明:直线AC1与直线A1D1所成角的余弦值为.
29.己知
a
=(-1,2),b
=(-2,1),证明:cos〈a,b〉=4/5.
30.己知x∈(1,10),A=lg2x,B=lgx2,证明:A<B.
五、简答题(5题)31.如图:在长方体从中,E,F分别为和AB和中点。(1)求证:AF//平面。(2)求与底面ABCD所成角的正切值。
32.拋物线的顶点在原点,焦点为椭圆的左焦点,过点M(-1,-1)引抛物线的弦使M为弦的中点,求弦长
33.等差数列的前n项和为Sn,已知a10=30,a20=50。(1)求通项公式an。(2)若Sn=242,求n。
34.已知椭圆和直线,求当m取何值时,椭圆与直线分别相交、相切、相离。
35.求经过点P(2,-3)且横纵截距相等的直线方程
六、综合题(5题)36.己知椭圆与抛物线y2=4x有共同的焦点F2,过椭圆的左焦点F1作倾斜角为的直线,与椭圆相交于M、N两点.求:(1)直线MN的方程和椭圆的方程;(2)△OMN的面积.
37.
(1)求该直线l的方程;(2)求圆心该直线上且与两坐标轴相切的圆的标准方程.
38.
39.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)
40.己知点A(0,2),5(-2,-2).(1)求过A,B两点的直线l的方程;(2)己知点A在椭圆C:上,且(1)中的直线l过椭圆C的左焦点。求椭圆C的标准方程.
参考答案
1.C
2.A平面向量的线性运算.因为a=(1,-1),b=(-1,2),所以2a+b=2(1,-1)+(-1,2)=(1,0),得(2a+b)×a==(1,0)×(1,-1)=1
3.B简单随机抽样方法.总体含有100个个体,则每个个体被抽到的概率为1/100,所以以简单随机抽样的方法从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为1/100×5=1/20.
4.B
5.C
6.D由,则两者平行。
7.A集合补集的计算.C∪M={2,4,6}.
8.D同角三角函数的变换,倍角公式.由sin(π/2+α)=-3/5得cosα=-3/5,又α∈[π/2,π],则sinα=4/5,所以sin(π-2α)=sin2α=2sinαcosα==2×4/5×(-3/5)=-24/25.
9.B
10.B三角函数的计算及恒等变换∵α∈(π,3π/2),cosα=-4/5,∴sinα=-3/5,故tanα=sinα/cosα=3/4,因此tanα(π/4-α)=1-tanα/(1+tanα)=1/7
11.
,由于CC1=1,AC1=,所以角AC1C的正弦值为。
12.
13.66。log216+cosπ+271/3=4+(-1)+3=6。
14.72
15.(-7,±2)
16.(x-1)2+(y-2)2=4圆标准方程.圆的标准方程为(x-a)2+(y-2)2=r2,a=1,b=2,r=2
17.e=双曲线的定义.因为
18.00。将x=2代入f(x)得,f(2)=0。
19.0.4
20.-6
21.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
22.
23.
24.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2
25.
26.证明:根据该几何体的特征,可知所剩的几何体的体积为长方体的体积减去所截的三棱锥的体积,即
27.
28.
29.
30.证明:考虑对数函数y=lgx的限制知
:当x∈(1,10)时,y∈(0,1)A-B=lg2
x-lgx2
=lgx·lgx-2lgx=lgx(lgx-2)∵lgx∈(0,1)∴lgx-2<0A-B<0∴A<B
31.
32.
33.
34.∵∴当△>0时,即,相交当△=0时,即,相切当△<0时,即,相离
35.设所求直线方程为y=kx+b由题意可知-3=2k+b,b=解得,时,b=0或k=-1时,b=-1∴所求直线为
36.
37.解:(1)斜率k=5/3,设直线l的方程5x-3y+m=0,直线l经过点(0,-8/3),所以m=8,直线l的方程为5x-3y-8=0。(2)设圆心为C(a,b),圆与两坐标轴相切,故a=±b又圆心在直线5x-3y-8=0上,将a=b或a=-b代入直线方程得:a=4或a=1当a=4时,b
=4,此时r=4,圆的方程为(x-4)2
+(y-4)2=16当a=1时,b
=-1,此时r=1,圆的方程为(x-1)2
+(y+1)2=1
38.
39.
40.解:(1)直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版返点合同协议书
- 2024赠送房地产投资房产协议范本3篇
- 2025年度医疗设备制造加工承包合同范本3篇
- 2024物业租赁合同规定书
- 2024证券公司资产托管业务服务合同
- 临床微生物标本的采集方法与运送课件
- 2025年度互联网公司100%股权转让协议书3篇
- 2024版海洋工程勘探与开发合作合同2篇
- 2024西安市二手房交易资金监管服务合同
- 珠宝销售顾问月工作总结
- 食堂食材配送以及售后服务方案
- 称量与天平培训试题及答案
- 块单项活动教学材料教案丹霞地貌
- 超全的超滤与纳滤概述、基本理论和应用
- 青年人应该如何树立正确的人生观
- 开封办公楼顶发光字制作预算单
- 安全生产标准化管理工作流程图
- 德龙自卸车合格证扫描件(原图)
- 药店-医疗器械组织机构和部门设置说明-医疗器械经营组织机构图--医疗器械组织机构图
- 自荐书(彩色封面)
- [国家公务员考试密押题库]申论模拟925
评论
0/150
提交评论