版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)15的倒数是AB5CD52在方格纸中,选择标有序号中的一个小正方形涂黑,与图中阴影部分构成中心对称图形该小正方形的序号是( )ABCD3已知一元二次方程2x2+2x1=0的两个根为x1,x2,且x1x2,下列结论正确的是()Ax1+x2=1
2、Bx1x2=1C|x1|x2|Dx12+x1=4如图是一个几何体的主视图和俯视图,则这个几何体是()A三棱柱B正方体C三棱锥D长方体5计算3(5)的结果等于()A15 B8 C8 D156若顺次连接四边形各边中点所得的四边形是菱形,则四边形一定是( )A矩形B菱形C对角线互相垂直的四边形D对角线相等的四边形7下列计算结果正确的是()ABCD8如图,ABC纸片中,A56,C88沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD则BDE的度数为( )A76B74C72D7092017年扬中地区生产总值约为546亿元,将546亿用科学记数法表示为()A5.46108B5.46109
3、C5.461010D5.46101110若2mn6,则代数式m-n+1的值为()A1B2C3D4二、填空题(本大题共6个小题,每小题3分,共18分)11两个等腰直角三角板如图放置,点F为BC的中点,AG=1,BG=3,则CH的长为_12填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值是 13如图,长方体的底面边长分别为1cm 和3cm,高为6cm如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要_cm14已知关于x的不等式组只有四个整数解,则实数a的取值范是_15使得分式值为零的x的值是_;16如图,四边形ABCD中,E,F,G,H分别是边AB、BC、
4、CD、DA的中点若四边形EFGH为菱形,则对角线AC、BD应满足条件_三、解答题(共8题,共72分)17(8分)解分式方程:18(8分)如图1,抛物线yax2+(a+2)x+2(a0),与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点P(m,0)(0m4),过点P作x轴的垂线交直线AB于点N,交抛物线于点M(1)求抛物线的解析式;(2)若PN:PM1:4,求m的值;(3)如图2,在(2)的条件下,设动点P对应的位置是P1,将线段OP1绕点O逆时针旋转得到OP2,旋转角为(090),连接AP2、BP2,求AP2+的最小值19(8分)如图,在平面直角坐标系中,A、B为x轴上两点,C、D为
5、y轴上的两点,经过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”已知点C的坐标为(0,),点M是抛物线C2:(0)的顶点(1)求A、B两点的坐标;(2)“蛋线”在第四象限上是否存在一点P,使得PBC的面积最大?若存在,求出PBC面积的最大值;若不存在,请说明理由;(3)当BDM为直角三角形时,求的值20(8分)在某小学“演讲大赛”选拔赛初赛中,甲、乙、丙三位评委对小选手的综合表现,分别给出“待定”(用字母W表示)或“通过”(用字母P表示)的结论(1)请用树状图表示出三位评委给小选手琪琪的所有可能的结论;(2)对于小选手琪
6、琪,只有甲、乙两位评委给出相同结论的概率是多少?(3)比赛规定,三位评委中至少有两位给出“通过”的结论,则小选手可入围进入复赛,问琪琪进入复赛的概率是多少?21(8分)一个不透明的口袋里装有分别标有汉字“美”、“丽”、“光”、“明”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.(1)若从中任取一个球,求摸出球上的汉字刚好是“美”的概率;(2)甲从中任取一球,不放回,再从中任取一球,请用树状图或列表法,求甲取出的两个球上的汉字恰能组成“美丽”或“光明”的概率.22(10分)如图,已知AB是O的直径,CD与O相切于C,BECO(1)求证:BC是ABE的平分线;(2)若D
7、C=8,O的半径OA=6,求CE的长23(12分)为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?24解不等式 ,并把它的解集表
8、示在数轴上.参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】若两个数的乘积是1,我们就称这两个数互为倒数【详解】解:5的倒数是故选C2、B【解析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合。因此,通过观察发现,当涂黑时,所形成的图形关于点A中心对称。故选B。3、D【解析】【分析】直接利用根与系数的关系对A、B进行判断;由于x1+x20,x1x20,则利用有理数的性质得到x1、x2异号,且负数的绝对值大,则可对C进行判断;利用一元二次方程解的定义对D进行判断【详解】根据题意得x1+x2=1,x1x2=,故A、B选项错误;x1+x20,x1x2
9、0,x1、x2异号,且负数的绝对值大,故C选项错误;x1为一元二次方程2x2+2x1=0的根,2x12+2x11=0,x12+x1=,故D选项正确,故选D【点睛】本题考查了一元二次方程的解、一元二次方程根与系数的关系,熟练掌握相关内容是解题的关键.4、A【解析】【分析】根据三视图的知识使用排除法即可求得答案.【详解】如图,由主视图为三角形,排除了B、D,由俯视图为长方形,可排除C,故选A【点睛】本题考查了由三视图判断几何体的知识,做此类题时可利用排除法解答5、A【解析】按照有理数的运算规则计算即可.【详解】原式=-35=-15,故选择A.【点睛】本题考查了有理数的运算,注意符号不要搞错.6、C
10、【解析】【分析】如图,根据三角形的中位线定理得到EHFG,EH=FG,EF=BD,则可得四边形EFGH是平行四边形,若平行四边形EFGH是菱形,则可有EF=EH,由此即可得到答案【点睛】如图,E,F,G,H分别是边AD,DC,CB,AB的中点,EH=AC,EHAC,FG=AC,FGAC,EF=BD,EHFG,EH=FG,四边形EFGH是平行四边形,假设AC=BD,EH=AC,EF=BD,则EF=EH,平行四边形EFGH是菱形,即只有具备AC=BD即可推出四边形是菱形,故选D【点睛】本题考查了中点四边形,涉及到菱形的判定,三角形的中位线定理,平行四边形的判定等知识,熟练掌握和灵活运用相关性质进行
11、推理是解此题的关键7、C【解析】利用幂的乘方、同底数幂的乘法、合并同类项及零指数幂的定义分别计算后即可确定正确的选项【详解】A、原式,故错误;B、原式,故错误;C、利用合并同类项的知识可知该选项正确;D、,所以原式无意义,错误,故选C【点睛】本题考查了幂的运算性质及特殊角的三角函数值的知识,解题的关键是能够利用有关法则进行正确的运算,难度不大8、B【解析】直接利用三角形内角和定理得出ABC的度数,再利用翻折变换的性质得出BDE的度数【详解】解:A=56,C=88,ABC=180-56-88=36,沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,CBD=DBE=18,C=D
12、EB=88,BDE=180-18-88=74故选:B【点睛】此题主要考查了三角形内角和定理,正确掌握三角形内角和定理是解题关键9、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同【详解】解:将546亿用科学记数法表示为:5.461010 ,故本题选C.【点睛】本题考查的是科学计数法,熟练掌握它的定义是解题的关键.10、D【解析】先对m-n+1变形得到(2mn)+1,再将2mn6整体代入进行计算,即可得到答案.【详解】mn+1(2mn)+1当2mn6时,原式6+13+14,故选:D【点
13、睛】本题考查代数式,解题的关键是掌握整体代入法.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】依据B=C=45,DFE=45,即可得出BGF=CFH,进而得到BFGCHF,依据相似三角形的性质,即可得到=,即=,即可得到CH=【详解】解:AG=1,BG=3,AB=4,ABC是等腰直角三角形,BC=4,B=C=45,F是BC的中点,BF=CF=2,DEF是等腰直角三角形,DFE=45,CFH=180BFG45=135BFG,又BFG中,BGF=180BBFG=135BFG,BGF=CFH,BFGCHF,=,即=,CH=,故答案为【点睛】本题主要考查了相似三角形的判定与性质,在
14、判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.12、2【解析】试题分析:分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数因此,图中阴影部分的两个数分别是左下是12,右上是1解:分析可得图中阴影部分的两个数分别是左下是12,右上是1,则m=12110=2故答案为2考点:规律型:数字的变化类13、1【解析】要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果【详解】解:将长方体展开,连接A、B,AA=1+3+1+3=8(cm),AB=6cm,根据两点之间线段最
15、短,AB=1cm故答案为1考点:平面展开-最短路径问题14、-3a-2【解析】分析:求出不等式组中两不等式的解集,根据不等式取解集的方法:同大取大;同小取小;大大小小无解;大小小大取中间的法则表示出不等式组的解集,由不等式组只有四个整数解,根据解集取出四个整数解,即可得出a的范围详解: 由不等式解得: 由不等式移项合并得:2x4,解得:x2,原不等式组的解集为 由不等式组只有四个整数解,即为1,0,1,2,可得出实数a的范围为 故答案为点睛:考查一元一次不等式组的整数解,求不等式的解集,根据不等式组有4个整数解觉得实数的取值范围.15、2【解析】根据分式的性质,要使分式有意义,则必须分母不能为
16、0,要使分式为零,则只有分子为0,因此计算即可.【详解】解:要使分式有意义则 ,即 要使分式为零,则 ,即 综上可得 故答案为2【点睛】本题主要考查分式的性质,关键在于分式的分母不能为0.16、AC=BD【解析】试题分析:添加的条件应为:AC=BD,把AC=BD作为已知条件,根据三角形的中位线定理可得,HG平行且等于AC的一半,EF平行且等于AC的一半,根据等量代换和平行于同一条直线的两直线平行,得到HG和EF平行且相等,所以EFGH为平行四边形,又EH等于BD的一半且AC=BD,所以得到所证四边形的邻边EH与HG相等,所以四边形EFGH为菱形试题解析:添加的条件应为:AC=BD证明:E,F,
17、G,H分别是边AB、BC、CD、DA的中点,在ADC中,HG为ADC的中位线,所以HGAC且HG=AC;同理EFAC且EF=AC,同理可得EH=BD,则HGEF且HG=EF,四边形EFGH为平行四边形,又AC=BD,所以EF=EH,四边形EFGH为菱形考点:1菱形的性质;2三角形中位线定理三、解答题(共8题,共72分)17、【解析】试题分析:方程最简公分母为,方程两边同乘将分式方程转化为整式方程求解,要注意检验试题解析:方程两边同乘,得:,整理解得:,经检验:是原方程的解考点:解分式方程18、(1);(2)m3;(3)【解析】(1)本题需先根据图象过A点,代入即可求出解析式;(2)由OABPA
18、N可用m表示出PN,且可表示出PM,由条件可得到关于m的方程,则可求得m的值;(3)在y轴上取一点Q,使,可证的P2OBQOP2,则可求得Q点坐标,则可把AP2+BP2转换为AP2+QP2,利用三角形三边关系可知当A、P2、Q三点在一条线上时,有最小值,则可求出答案.【详解】解:(1)A(4,0)在抛物线上,016a+4(a+2)+2,解得a,抛物线的解析式为y;(2)令x0可得y2,OB2,OPm,AP4m,PMx轴,OABPAN,M在抛物线上,PM+2,PN:MN1:3,PN:PM1:4,解得m3或m4(舍去);(3)在y轴上取一点Q,使,如图,由(2)可知P1(3,0),且OB2,且P2
19、OBQOP2,P2OBQOP2,当Q(0,)时,QP2,AP2+BP2AP2+QP2AQ,当A、P2、Q三点在一条线上时,AP2+QP2有最小值,A(4,0),Q(0,),AQ,即AP2+BP2的最小值为【点睛】本题考查了抛物线解析式的求法,抛物线与相似三角形的问题,坐标系里表示三角形的面积及线段和最小值问题,要求会用字母代替长度,坐标,会对代数式进行合理变形,难度相对较大.19、(1)A(,0)、B(3,0)(2)存在SPBC最大值为 (3)或时,BDM为直角三角形【解析】(1)在中令y=0,即可得到A、B两点的坐标(2)先用待定系数法得到抛物线C1的解析式,由SPBC = SPOC+ SB
20、OPSBOC得到PBC面积的表达式,根据二次函数最值原理求出最大值(3)先表示出DM2,BD2,MB2,再分两种情况:BMD=90时;BDM=90时,讨论即可求得m的值【详解】解:(1)令y=0,则,m0,解得:,A(,0)、B(3,0)(2)存在理由如下:设抛物线C1的表达式为(),把C(0,)代入可得,1的表达式为:,即设P(p,), SPBC = SPOC+ SBOPSBOC=0,当时,SPBC最大值为(3)由C2可知: B(3,0),D(0,),M(1,),BD2=,BM2=,DM2=MBD90, 讨论BMD=90和BDM=90两种情况:当BMD=90时,BM2+ DM2= BD2,即
21、=,解得:,(舍去)当BDM=90时,BD2+ DM2= BM2,即=,解得:,(舍去) 综上所述,或时,BDM为直角三角形20、(1)见解析;(2);(3).【解析】(1)根据列树状图的步骤和题意分析所有等可能的出现结果,即可画出图形;(2)根据(1)求出甲、乙两位评委给出相同结论的情况数,再根据概率公式即可求出答案;(3)根据(1)即可求出琪琪进入复赛的概率【详解】(1)画树状图如下:(2)共有8种等可能结果,只有甲、乙两位评委给出相同结论的有2种可能,只有甲、乙两位评委给出相同结论的概率P=;(3)共有8种等可能结果,三位评委中至少有两位给出“通过”结论的有4种可能,乐乐进入复赛的概率P
22、=【点睛】此题考查了列树状图,掌握列树状图的步骤,找出三位评委给出相同结论的情况数是本题的关键,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P=21、 (1);(2).【解析】(1)一共4个小球,则任取一个球,共有4种不同结果,摸出球上的汉字刚好是“美”的概率为;(2)列表或画出树状图,根据一共出现的等可能的情况及恰能组成“美丽”或“光明”的情况进行解答即可.【详解】(1) “美”、“丽”、“光”、“明”的四个小球,任取一球,共有4种不同结果,任取一个球,摸出球上的汉字刚好是“美”的概率P=(2)列表如下:美丽光明美-(美,丽)(光,美)(美,明)丽(美,丽)-(光,丽)(明,丽)光(美,光)(光,丽)-(光,明)明(美,明)(明,丽)(光,明)-根据表格可得:共有12中等可能的结果,其中恰能组成“美丽”或“光明”共有4种,故取出的两个球上的汉字恰能组成“美丽”或“光明”的概率.【点睛】此题考查的是用列表法或树状图法求概率与不等式的性质注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 7年级英语课件
- 《生物医学功能材料》课件
- 《RS注意事项》课件
- 《课科学技术的重大成果》课件
- 燃油锅炉安全培训
- 《妇产科学》课件-19.2激素避孕
- 大康镇匡山社区名称由来及概况
- 2024第一季度品牌知识考核复习测试附答案
- 《石油地面》课件
- 《殡葬用品设计》课件-美观性原则
- 智能治理:提高政府决策的准确性和效率
- 2024年滴眼剂市场份额分析:全球滴眼剂市场销售额达到了4.89亿美元
- 2023-2024学年广东省广州市白云区九年级(上)期末语文试卷
- 2024-2030年中国铁皮石斛行业市场竞争策略及投资价值研究报告
- 新生儿呼吸系统常见疾病的特点及护理课件
- 融入人工智能的《语言学概论》教案设计
- 学术规范与论文写作智慧树知到答案2024年浙江工业大学
- 2024年典型事故案例警示教育手册15例
- 《非计划性拔管》课件
- 酒店企业员工消防防火安全知识培训
- 章质谱法剖析PPT课件
评论
0/150
提交评论