


版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1一次函数满足,且y随x的增大而减小,则此函数的图像一定不经过( )A第一象限B第二象限C第三象限D第四象限2若一次函数y(2m3)x1+m的图象不经过第三象限,则m的取值范图是()A
2、1mB1mC1mD1m3如图,若数轴上的点A,B分别与实数1,1对应,用圆规在数轴上画点C,则与点C对应的实数是()A2B3C4D54如图所示的几何体的俯视图是()ABCD5从1,2,3,6这四个数中任选两数,分别记作m,n,那么点(m,n)在函数y图象上的概率是()ABCD6已知正方形ABCD的边长为4cm,动点P从A出发,沿AD边以1cm/s的速度运动,动点Q从B出发,沿BC,CD边以2cm/s的速度运动,点P,Q同时出发,运动到点D均停止运动,设运动时间为x(秒),BPQ的面积为y(cm2),则y与x之间的函数图象大致是( )ABCD7小轩从如图所示的二次函数y=ax2+bx+c(a0)
3、的图象中,观察得出了下面五条信息:ab0;a+b+c0;b+2c0;a2b+4c0;你认为其中正确信息的个数有A2个B3个C4个D5个8在下列四个图案中既是轴对称图形,又是中心对称图形的是( )ABC.D9从一个边长为3cm的大立方体挖去一个边长为1cm的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是()ABCD10已知一个多边形的内角和是外角和的2倍,则此多边形的边数为 ( )A6B7C8D911一个正方形花坛的面积为7m2,其边长为am,则a的取值范围为()A0a1Bla2C2a3D3a412老师在微信群发了这样一个图:以线段AB为边作正五边形ABCDE和正三角形ABG,连接A
4、C、DG,交点为F,下列四位同学的说法不正确的是( )A甲B乙C丙D丁二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,点A为函数y=(x0)图象上一点,连结OA,交函数y=(x0)的图象于点B,点C是x轴上一点,且AO=AC,则OBC的面积为_14如图,在梯形ACDB中,ABCD,C+D=90,AB=2,CD=8,E,F分别是AB,CD的中点,则EF=_15函数y的自变量x的取值范围为_16如图,抛物线yax2+bx+c与x轴相交于A、B两点,点A在点B左侧,顶点在折线MPN上移动,它们的坐标分别为M(1,4)、P(3,4)、N(3,1)若在抛物线移动过程中,点A横坐标的最小值
5、为3,则ab+c的最小值是_17因式分解a36a2+9a=_18如图,AB为O的弦,C为弦AB上一点,设ACm,BCn(mn),将弦AB绕圆心O旋转一周,若线段BC扫过的面积为(m2n2),则_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,抛物线y=(x1)2+c与x轴交于A,B(A,B分别在y轴的左右两侧)两点,与y轴的正半轴交于点C,顶点为D,已知A(1,0)(1)求点B,C的坐标;(2)判断CDB的形状并说明理由;(3)将COB沿x轴向右平移t个单位长度(0t3)得到QPEQPE与CDB重叠部分(如图中阴影部分)面积为S,求S与t的函数
6、关系式,并写出自变量t的取值范围20(6分)如图, 二次函数的图象与 x 轴交于和两点,与 y 轴交于点 C,一次函数的图象过点 A、C(1)求二次函数的表达式(2)根据函数图象直接写出使二次函数值大于一次函数值的自变量 x 的取值范围21(6分)解不等式组并写出它的所有整数解22(8分) “机动车行驶到斑马线要礼让行人”等交通法规实施后,某校数学课外实践小组就对这些交通法规的了解情况在全校随机调查了部分学生,调查结果分为四种:A非常了解,B比较了解,C基本了解,D不太了解,实践小组把此次调查结果整理并绘制成下面不完整的条形统计图和扇形统计图请结合图中所给信息解答下列问题:(1)本次共调查名学
7、生;扇形统计图中C所对应扇形的圆心角度数是;(2)补全条形统计图;(3)该校共有800名学生,根据以上信息,请你估计全校学生中对这些交通法规“非常了解”的有多少名?(4)通过此次调查,数学课外实践小组的学生对交通法规有了更多的认识,学校准备从组内的甲、乙、丙、丁四位学生中随机抽取两名学生参加市区交通法规竞赛,请用列表或画树状图的方法求甲和乙两名学生同时被选中的概率23(8分)如图,四边形ABCD内接于圆,对角线AC与BD相交于点E,F在AC上,AB=AD,BFC=BAD=2DFC求证:(1)CDDF;(2)BC=2CD24(10分)我们常用的数是十进制数,如,数要用10个数码(又叫数字):0、
8、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?25(10分)如图,已知抛物线y=x2+bx+c经过ABC的三个顶点,其中点A(0,1),点B(9,10),ACx轴,点P是直线AC下方抛物线上的动点(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与ABC相似,若存在,求出点Q的坐标,若不存在,
9、请说明理由26(12分)某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中选出一类最喜爱的电视节目,以下是根据调查结果绘制的不完整统计表:节目代号ABCDE节目类型新闻体育动画娱乐戏曲喜爱人数1230m549请你根据以上的信息,回答下列问题:(1)被调查学生的总数为 人,统计表中m的值为 扇形统计图中n的值为 ;(2)被调查学生中,最喜爱电视节目的“众数” ;(3)该校共有2000名学生,根据调查结果,估计该校最喜爱新闻节目的学生人数.27(12分)如图,正方形OABC的面积为9,点O为坐标原点,点A在x轴上,点C上y轴上,点
10、B在反比例函数y=(k0,x0)的图象上,点E从原点O出发,以每秒1个单位长度的速度向x轴正方向运动,过点E作x的垂线,交反比例函数y=(k0,x0)的图象于点P,过点P作PFy轴于点F;记矩形OEPF和正方形OABC不重合部分的面积为S,点E的运动时间为t秒(1)求该反比例函数的解析式(2)求S与t的函数关系式;并求当S=时,对应的t值(3)在点E的运动过程中,是否存在一个t值,使FBO为等腰三角形?若有,有几个,写出t值参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】y随x的增大而减小,可得一次函数y=kx+b单
11、调递减,k0,又满足kb0,由此即可得出答案【详解】y随x的增大而减小,一次函数y=kx+b单调递减,k0,kb0,直线经过第二、一、四象限,不经过第三象限,故选C【点睛】本题考查了一次函数的图象和性质,熟练掌握一次函数y=kx+b(k0,k、b是常数)的图象和性质是解题的关键.2、B【解析】根据一次函数的性质,根据不等式组即可解决问题;【详解】一次函数y=(2m-3)x-1+m的图象不经过第三象限,解得1m故选:B【点睛】本题考查一次函数的图象与系数的关系等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型3、B【解析】由数轴上的点A、B 分别与实数1,1对应,即可求得AB=2,再
12、根据半径相等得到BC=2,由此即求得点C对应的实数【详解】数轴上的点 A,B 分别与实数1,1 对应,AB=|1(1)|=2,BC=AB=2,与点 C 对应的实数是:1+2=3. 故选B【点睛】本题考查了实数与数轴,熟记实数与数轴上的点是一一对应的关系是解决本题的关键4、D【解析】找到从上面看所得到的图形即可,注意所有看到的棱都应表现在俯视图中【详解】从上往下看,该几何体的俯视图与选项D所示视图一致故选D【点睛】本题考查了简单组合体三视图的知识,俯视图是从物体的上面看得到的视图5、B【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与点(m,n)恰好在反比例函数y图象上的情况,再
13、利用概率公式即可求得答案【详解】解:画树状图得:共有12种等可能的结果,点(m,n)恰好在反比例函数y图象上的有:(2,3),(1,6),(3,2),(6,1),点(m,n)在函数y图象上的概率是:故选B【点睛】此题考查了列表法或树状图法求概率用到的知识点为:概率所求情况数与总情况数之比6、B【解析】根据题意,Q点分别在BC、CD上运动时,形成不同的三角形,分别用x表示即可.【详解】(1)当0 x2时,BQ2x当2x4时,如下图 由上可知故选:B.【点睛】本题是双动点问题,解答时要注意讨论动点在临界两侧时形成的不同图形,并要根据图形列出函数关系式.7、D【解析】试题分析:如图,抛物线开口方向向
14、下,a1对称轴x,1ab1故正确如图,当x=1时,y1,即a+b+c1故正确如图,当x=1时,y=ab+c1,2a2b+2c1,即3b2b+2c1b+2c1故正确如图,当x=1时,y1,即ab+c1,抛物线与y轴交于正半轴,c1b1,cb1(ab+c)+(cb)+2c1,即a2b+4c1故正确如图,对称轴,则故正确综上所述,正确的结论是,共5个故选D8、B【解析】试题分析:根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图
15、形叫做中心对称图形,这个点就是它的对称中心,因此:A、不是轴对称图形,是中心对称图形,不符合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、不是轴对称图形,也不是中心对称图形,不符合题意;D、是轴对称图形,不是中心对称图形,不符合题意故选B考点:轴对称图形和中心对称图形9、C【解析】左视图就是从物体的左边往右边看小正方形应该在右上角,故B错误,看不到的线要用虚线,故A错误,大立方体的边长为3cm,挖去的小立方体边长为1cm,所以小正方形的边长应该是大正方形,故D错误,所以C正确故此题选C10、A【解析】试题分析:根据多边形的外角和是310,即可求得多边形的内角的度数为720,依据多边形
16、的内角和公式列方程即可得(n2)180=720,解得:n=1故选A考点:多边形的内角和定理以及多边形的外角和定理11、C【解析】先根据正方形的面积公式求边长,再根据无理数的估算方法求取值范围.【详解】解:一个正方形花坛的面积为,其边长为, 则a的取值范围为:故选:C【点睛】此题重点考查学生对无理数的理解,会估算无理数的大小是解题的关键.12、B【解析】利用对称性可知直线DG是正五边形ABCDE和正三角形ABG的对称轴,再利用正五边形、等边三角形的性质一一判断即可;【详解】五边形ABCDE是正五边形,ABG是等边三角形,直线DG是正五边形ABCDE和正三角形ABG的对称轴,DG垂直平分线段AB,
17、BCD=BAE=EDC=108,BCA=BAC=36,DCA=72,CDE+DCA=180,DEAC,CDF=EDF=CFD=72,CDF是等腰三角形故丁、甲、丙正确故选B【点睛】本题考查正多边形的性质、等边三角形的性质、轴对称图形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型二、填空题:(本大题共6个小题,每小题4分,共24分)13、6【解析】根据题意可以分别设出点A、点B的坐标,根据点O、A、B在同一条直线上可以得到A、B的坐标之间的关系,由AO=AC可知点C的横坐标是点A的横坐标的2倍,从而可以得到OBC的面积【详解】设点A的坐标为(a,),点B的坐标为(b,),点
18、C是x轴上一点,且AO=AC,点C的坐标是(2a,0),设过点O(0,0),A(a, )的直线的解析式为:y=kx,=ka,解得k=,又点B(b, )在y=x上,=b,解得, =或= (舍去),SOBC=6.故答案为:6.【点睛】本题考查了等腰三角形的性质与反比例函数的图象以及三角形的面积公式,解题的关键是熟练的掌握等腰三角形的性质与反比例函数的图象以及三角形的面积公式.14、3【解析】延长AC和BD,交于M点,M、E、F三点共线,EF=MFME.【详解】延长AC和BD,交于M点,M、E、F三点共线,C+D=90,MCD是直角三角形,MF=,同理ME=,EF=MFME=4-1=3.【点睛】本题
19、考查了直角三角形斜边中线的性质.15、x1【解析】试题分析:由题意得,x+10,解得x1故答案为x1考点:函数自变量的取值范围16、1【解析】由题意得:当顶点在M处,点A横坐标为-3,可以求出抛物线的a值;当顶点在N处时,y=a-b+c取得最小值,即可求解【详解】解:由题意得:当顶点在M处,点A横坐标为-3,则抛物线的表达式为:y=a(x+1)2+4,将点A坐标(-3,0)代入上式得:0=a(-3+1)2+4,解得:a=-1,当x=-1时,y=a-b+c,顶点在N处时,y=a-b+c取得最小值,顶点在N处,抛物线的表达式为:y=-(x-3)2+1,当x=-1时,y=a-b+c=-(-1-3)2
20、+1=-1,故答案为-1【点睛】本题考查的是二次函数知识的综合运用,本题的核心是确定顶点在M、N处函数表达式,其中函数的a值始终不变17、a(a-3)2【解析】根据因式分解的方法与步骤,先提取公因式,再根据完全平方公式分解即可.【详解】解:故答案为:.【点睛】本题考查因式分解的方法与步骤,熟练掌握方法与步骤是解答关键.18、【解析】先确定线段BC过的面积:圆环的面积,作辅助圆和弦心距OD,根据已知面积列等式可得:S=OB2-OC2=(m2-n2),则OB2-OC2=m2-n2,由勾股定理代入,并解一元二次方程可得结论【详解】如图,连接OB、OC,以O为圆心,OC为半径画圆,则将弦AB绕圆心O旋
21、转一周,线段BC扫过的面积为圆环的面积,即S=OB2-OC2=(m2-n2),OB2-OC2=m2-n2,AC=m,BC=n(mn),AM=m+n,过O作ODAB于D,BD=AD=AB=,CD=AC-AD=m-=,由勾股定理得:OB2-OC2=(BD2+OD2)-(CD2+OD2)=BD2-CD2=(BD+CD)(BD-CD)=mn,m2-n2=mn,m2-mn-n2=0,m=,m0,n0,m=,故答案为【点睛】此题主要考查了勾股定理,垂径定理,一元二次方程等知识,根据旋转的性质确定线段BC扫过的面积是解题的关键,是一道中等难度的题目三、解答题:(本大题共9个小题,共78分,解答应写出文字说明
22、、证明过程或演算步骤19、 ()B(3,0);C(0,3);()为直角三角形;().【解析】(1)首先用待定系数法求出抛物线的解析式,然后进一步确定点B,C的坐标(2)分别求出CDB三边的长度,利用勾股定理的逆定理判定CDB为直角三角形(3)COB沿x轴向右平移过程中,分两个阶段:当0t时,如答图2所示,此时重叠部分为一个四边形;当t3时,如答图3所示,此时重叠部分为一个三角形【详解】解:()点在抛物线上,得抛物线解析式为:,令,得,;令,得或,.()为直角三角形.理由如下:由抛物线解析式,得顶点的坐标为.如答图1所示,过点作轴于点M,则,.过点作于点,则,.在中,由勾股定理得:;在中,由勾股
23、定理得:;在中,由勾股定理得:.,为直角三角形. ()设直线的解析式为,解得,直线是直线向右平移个单位得到,直线的解析式为:;设直线的解析式为,解得:,.连续并延长,射线交交于,则.在向右平移的过程中:(1)当时,如答图2所示:设与交于点,可得,.设与的交点为,则:.解得,.(2)当时,如答图3所示:设分别与交于点、点.,.直线解析式为,令,得,.综上所述,与的函数关系式为:.20、(1);(2)【解析】(1)将和两点代入函数解析式即可;(2)结合二次函数图象即可【详解】解:(1)二次函数与轴交于和两点,解得二次函数的表达式为 (2)由函数图象可知,二次函数值大于一次函数值的自变量x的取值范围
24、是【点睛】本题考查了待定系数法求二次函数解析式以及二次函数与不等式,解题的关键是熟悉二次函数的性质21、不等式组的整数解有1、0、1【解析】先解不等式组,求得不等式组的解集,再确定不等式组的整数解即可.【详解】,解不等式可得,x-2;解不等式可得,x1;不等式组的解集为:2x1,不等式组的整数解有1、0、1【点睛】本题考查了解一元一次不等式组,正确求出每一个不等式解集是基础, 熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则求不等式组的解集是解答本题的关键22、(1)60、90;(2)补全条形图见解析;(3)估计全校学生中对这些交通法规“非常了解”的有320名;(4)甲和乙两名
25、学生同时被选中的概率为【解析】【分析】(1)用A的人数以及所占的百分比就可以求出调查的总人数,用C的人数除以调查的总人数后再乘以360度即可得;(2)根据D的百分比求出D的人数,继而求出B的人数,即可补全条形统计图;(3)用“非常了解”所占的比例乘以800即可求得;(4)画树状图得到所有可能的情况,然后找出符合条件的情况用,利用概率公式进行求解即可得.【详解】(1)本次调查的学生总人数为2440%=60人,扇形统计图中C所对应扇形的圆心角度数是360=90, 故答案为60、90;(2)D类型人数为605%=3,则B类型人数为60(24+15+3)=18,补全条形图如下:(3)估计全校学生中对这
26、些交通法规“非常了解”的有80040%=320名;(4)画树状图为:共有12种等可能的结果数,其中甲和乙两名学生同时被选中的结果数为2,所以甲和乙两名学生同时被选中的概率为【点睛】本题考查了条形统计图、扇形统计图、列表法或树状图法求概率、用样本估计总体等,读懂统计图,从不同的统计图中找到必要的有关联的信息进行解题是关键.23、(1)详见解析;(2)详见解析.【解析】(1)利用在同圆中所对的弧相等,弦相等,所对的圆周角相等,三角形内角和可证得CDF=90,则CDDF;(2)应先找到BC的一半,证明BC的一半和CD相等即可【详解】证明:(1)AB=AD,弧AB=弧AD,ADB=ABDACB=ADB
27、,ACD=ABD,ACB=ADB=ABD=ACDADB=(180BAD)2=90DFCADB+DFC=90,即ACD+DFC=90,CDDF(2)过F作FGBC于点G,ACB=ADB,又BFC=BAD,FBC=ABD=ADB=ACBFB=FCFG平分BC,G为BC中点, 在FGC和DFC中, FGCDFC(ASA), BC=2CD【点睛】本题用到的知识点为:同圆中,相等的弧所对的弦相等,所对的圆周角相等,注意把所求角的度数进行合理分割;证两条线段相等,应证这两条线段所在的三角形全等24、1.【解析】分析:利用新定义得到101011=125+024+123+022+121+120,然后根据乘方的
28、定义进行计算详解:101011=125+024+123+022+121+120=1,所以二进制中的数101011等于十进制中的1点睛:本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方25、 (1) 抛物线的解析式为y=x2-2x+1,(2) 四边形AECP的面积的最大值是,点P(,);(3) Q(4,1)或(-3,1).【解析】(1)把点A,B的坐标代入抛物线的解析式中,求b,c;(2)设P(m,m22m1),根据S四边形AECPSAECSAPC,把S四边形AECP用含m式子表示,根据二次函数的性质求解;(3)设Q(t,1),分别求出点A,B,C,P的坐标,求出AB,
29、BC,CA;用含t的式子表示出PQ,CQ,判断出BACPCA45,则要分两种情况讨论,根据相似三角形的对应边成比例求t.【详解】解:(1)将A(0,1),B(9,10)代入函数解析式得:819bc10,c1,解得b2,c1,所以抛物线的解析式yx22x1;(2)ACx轴,A(0,1),x22x11,解得x16,x20(舍),即C点坐标为(6,1),点A(0,1),点B(9,10),直线AB的解析式为yx1,设P(m,m22m1),E(m,m1),PEm1(m22m1)m23m.ACPE,AC6,S四边形AECPSAECSAPCACEFACPFAC(EFPF)ACEP6(m23m)m29m.0m
30、6,当m时,四边形AECP的面积最大值是,此时P();(3)yx22x1(x3)22,P(3,2),PFyFyp3,CFxFxC3,PFCF,PCF45,同理可得EAF45,PCFEAF,在直线AC上存在满足条件的点Q,设Q(t,1)且AB,AC6,CP,以C,P,Q为顶点的三角形与ABC相似,当CPQABC时,CQ:ACCP:AB,(6t):6,解得t4,所以Q(4,1);当CQPABC时,CQ:ABCP:AC,(6t)6,解得t3,所以Q(3,1).综上所述:当点P为抛物线的顶点时,在直线AC上存在点Q,使得以C,P,Q为顶点的三角形与ABC相似,Q点的坐标为(4,1)或(3,1).【点睛】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用面积的和差得出二次函数,又利用了二次函数的性质,平行于坐标轴的直线上两点间的距离是较大的坐标减较小的坐标;解(3)的关键是利用相似三角形的性质的出关于CQ的比例,要
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 淀粉在化妆品的滑石粉替代应用考核试卷
- 稀有金属在量子计算领域的应用考核试卷
- 欧阳修的春秋笔法宋代士大夫如何改写唐史
- 2025年租房经营民宿的合同范本
- 2025年度品牌推广服务合同
- 2025授权代建合同示范文本
- 2025房产交易居间合同范本
- 《2025年终止服务合同范本》
- 隧道工程-桥梁及结构工程施工图设计说明
- 苏教版九年级下册数学(全册知识点考点梳理、重点题型分类巩固练习)(提高版)(家教、补习、复习用)
- 中药饮片出库单
- 国开2023春《语言学概论》形考任务1-3+大作业参考答案
- 宿舍楼施工方案方案
- 甲醇-水精馏塔
- 中国话剧史专题知识
- GB/T 15544.1-2023三相交流系统短路电流计算第1部分:电流计算
- GB/T 90.3-2010紧固件质量保证体系
- GB/T 18799-2020家用和类似用途电熨斗性能测试方法
- 科技公司涉密计算机软件安装审批表
- GA/T 1369-2016人员密集场所消防安全评估导则
- GA 1517-2018金银珠宝营业场所安全防范要求
评论
0/150
提交评论