




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年九上数学期末模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每题4分,共48分)1如图在中,弦于点于点,若则的半径的长为( )ABCD2若,则的值为()A1BCD3如图,从一块直径为24cm的圆形纸片上,剪出一个圆心角为90的扇形ABC,使点A,B,C都在圆周上,将剪下的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径是()A3 cmB2cmC6cmD12cm4对于方程,下列说法正确
2、的是( )A一次项系数为3B一次项系数为-3C常数项是3D方程的解为5下列事件属于随机事件的是()A抛出的篮球会下落B两枚骰子向上一面的点数之和大于1C买彩票中奖D口袋中只装有10个白球,从中摸出一个黑球6如图,已知A,B是反比例函数y= (k0,x0)图象上的两点,BCx轴,交y轴于点C,动点P从坐标原点O出发,沿OABC(图中“”所示路线)匀速运动,终点为C,过P作PMx轴,垂足为M设三角形OMP的面积为S,P点运动时间为t,则S关于x的函数图象大致为() ABCD7如图,l1l2l3,直线a,b与l1、l2、l3分别相交于A、B、C和点D、E、F若,DE4.2,则DF的长是()AB6C6
3、.3D10.58如图,ABC 中,AD 是中线,BC=8,B=DAC,则线段 AC 的长为( )A4B4C6D49如图,AOB是放置在正方形网格中的一个角,则tanAOB()ABC1D10张家口某小区要种植一个面积为3500m2的矩形草坪,设草坪的长为ym,宽为xm,则y关于x的函数解析式为()Ay3500 xBx3500yCyDy11遵义市脱贫攻坚工作中农村危房改造惠及百万余人,2008年以来全市累计实施农村危房改造40.37万户,其中的数据40.37万用科学记数法表示为( )ABCD12如图,在ABC中,cosB,sinC,AC5,则ABC的面积是( )A B12C14D21二、填空题(每
4、题4分,共24分)13若一个正六边形的周长为24,则该正六边形的面积为 14如图,已知在RtABC中,ACB=90,B=30,将ABC绕点C顺时针旋转一定角度得DEC,此时CDAB,连接AE,则tanEAC=_15如图,在中,点D、E分别在边、上,且,如果,那么_16形状与抛物线相同,对称轴是直线,且过点的抛物线的解析式是_17如图,从外一点引的两条切线、,切点分别是、,若,是弧上的一个动点(点与、两点不重合),过点作的切线,分别交、于点、,则的周长是_18如图,在ABCD中,AB为O的直径,O与DC相切于点E,与AD相交于点F,已知AB=12,C=60,则 的长为 三、解答题(共78分)19
5、(8分)为了了解全校名同学对学校设置的体操、篮球、足球、跑步、舞蹈等课外活动项目的喜爱情况,在全校范围内随机抽取了若干名同学,对他们喜爱的项目(每人选一项)进行了问卷调查,将数据进行了统计,并绘制成了如图所示的条形统计图和扇形统计图(均不完整),请回答下列问题(1)在这次问卷调查中,共抽查了_名同学;(2)补全条形统计图;(3)估计该校名同学中喜爱足球活动的人数;(4)在体操社团活动中,由于甲、乙、丙、丁四人平时的表现优秀,现决定从这四人中任选两名参加体操大赛用树状图或列表法求恰好选中甲、乙两位同学的概率20(8分)如图,BM是以AB为直径的O的切线,B为切点,BC平分ABM,弦CD交AB于点
6、E,DEOE(1)求证:ACB是等腰直角三角形;(2)求证:OA2OEDC:(3)求tanACD的值21(8分)如图1,在RtABC中,B=90,BC=2AB=8,点D,E分别是边BC,AC的中点,连接DE,将EDC绕点C按顺时针方向旋转,记旋转角为.(1)问题发现 当时, ; 当时, (2)拓展探究试判断:当0360时,的大小有无变化?请仅就图2的情况给出证明.(3)问题解决当EDC旋转至A、D、E三点共线时,直接写出线段BD的长.22(10分)如图,中,顶点的坐标是,轴,交轴于点,顶点的纵坐标是,的面积是反比例函数的图象经过点和,求反比例函数的表达式23(10分)如图,已知直线ykx+6与
7、抛物线yax2+bx+c相交于A,B两点,且点A(1,4)为抛物线的顶点,点B在x轴上(1)求抛物线的解析式;(2)在(1)中抛物线的第三象限图象上是否存在一点P,使POB与POC全等?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点Q是y轴上一点,且ABQ为直角三角形,求点Q的坐标24(10分)如图,为美化中心城区环境,政府计划在长为30米,宽为20米的矩形场地上修建公园.其中要留出宽度相等的三条小路,且两条与平行,另一条与平行,其余部分建成花圃.(1)若花圃总面积为448平方米,求小路宽为多少米?(2)已知某园林公司修建小路的造价(元)和修建花圃的造价(元)与修建面积(平方米)之间
8、的函数关系分别为和.若要求小路宽度不少于2米且不超过4米,求小路宽为多少米时修建小路和花圃的总造价最低?25(12分)如图1,在ABC中,BAC90,ABAC,D为边AB上一点,连接CD,在线段CD上取一点E,以AE为直角边作等腰直角AEF,使EAF90,连接BF交CD的延长线于点P(1)探索:CE与BF有何数量关系和位置关系?并说明理由;(2)如图2,若AB2,AE1,把AEF绕点A顺时针旋转至AEF,当EAC60时,求BF的长26如图,一次函数ykx1(k0)与反比例函数y (m0)的图象有公共点A(1,2),直线lx轴于点N(3,0),与一次函数和反比例函数的图象分别相交于点B,C,连接
9、AC(1)求k和m的值;(2)求点B的坐标;(3)求ABC的面积参考答案一、选择题(每题4分,共48分)1、C【分析】根据垂径定理求得OD,AD的长,并且在直角AOD中运用勾股定理即可求解【详解】解:弦,于点,于点,四边形是矩形,;故选:【点睛】本题考查了垂径定理、勾股定理、矩形的判定与性质;利用垂径定理求出AD,AE的长是解决问题的关键2、D【解析】,=,故选D3、A【分析】圆的半径为12,求出AB的长度,用弧长公式可求得的长度,圆锥的底面圆的半径圆锥的弧长2【详解】ABcm,圆锥的底面圆的半径(2)3cm故选A【点睛】本题综合考查有关扇形和圆锥的相关计算解题思路:解决此类问题时要紧紧抓住两
10、者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长正确对这两个关系的记忆是解题的关键4、B【分析】先把方程化为一元二次方程的一般形式,再求出其一次项系数、二次项系数及常数项即可【详解】原方程可化为2x23x0,一次项系数为3,二次项系数为2,常数项为0,方程的解为x=0或x=,故选:B【点睛】本题考查的是一元二次方程的一般形式,熟知一元二次方程ax2bxc0(a0)中,ax2叫做二次项,a叫做二次项系数;bx叫做一次项;c叫做常数项是解答此题的关键5、C【解析】根据随机事件,必然事件,不可能事件概念解题即可.【详解】解:A. 抛出的篮
11、球会下落,是必然事件,所以错误,B. 两枚骰子向上一面的点数之和大于1,是不可能事件,所以错误,C. 买彩票中奖.是随机事件,正确,D. 口袋中只装有10个白球,从中摸出一个黑球, ,是不可能事件,所以错误,故选C.【点睛】本题考查了随机事件的概念,属于简单题,熟悉概念是解题关键.6、A【分析】结合点P的运动,将点P的运动路线分成OA、AB、BC三段位置来进行分析三角形OMP面积的计算方式,通过图形的特点分析出面积变化的趋势,从而得到答案【详解】设AOM=,点P运动的速度为a,当点P从点O运动到点A的过程中,S=a2cossint2,由于及a均为常量,从而可知图象本段应为抛物线,且S随着t的增
12、大而增大;当点P从A运动到B时,由反比例函数性质可知OPM的面积为k,保持不变,故本段图象应为与横轴平行的线段;当点P从B运动到C过程中,OM的长在减少,OPM的高与在B点时相同,故本段图象应该为一段下降的线段;故选A点睛:本题考查了反比例函数图象性质、锐角三角函数性质,解题的关键是明确点P在OA、AB、BC三段位置时三角形OMP的面积计算方式7、D【分析】根据平行线分线段成比例定理得出,再把已知条件代入求解即可【详解】解:l1l2l3,DE4.2,即,解得:EF6.3,DFDE+EF10.1故选:D【点睛】本题考查平行线分线段成比例定理熟练掌握平行线分线段成比例定理是解题关键8、B【分析】由
13、已知条件可得,可得出,可求出AC的长【详解】解:由题意得:B=DAC,ACB=ACD,所以,根据“相似三角形对应边成比例”,得,又AD 是中线,BC=8,得DC=4,代入可得AC=,故选B.【点睛】本题主要考查相似三角形的判定与性质灵活运用相似的性质可得出解答9、C【分析】连接AB,分别利用勾股定理求出AOB的各边边长,再利用勾股定理逆定理求得ABO是直角三角形,再求tanAOB的值即可【详解】解:连接AB如图,利用勾股定理得,,利用勾股定理逆定理得,AOB是直角三角形tanAOB=故选C【点睛】本题考查了在正方形网格中,勾股定理及勾股定理逆定理的应用.10、C【解析】根据矩形草坪的面积=长乘
14、宽,得 ,得 .故选C.11、B【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数【详解】解:根据科学记数法的定义:40.37万=故选:B.【点睛】此题考查的是科学记数法,掌握科学记数法的定义是解决此题的关键.12、A【分析】根据已知作出三角形的高线AD,进而得出AD,BD,CD,的长,即可得出三角形的面积【详解】解:过点A作ADBC,ABC中,cosB=,sinC=,AC=5,cosB=,B=45,sinC=,AD=3,CD=4
15、,BD=3,则ABC的面积是:ADBC=3(3+4)=故选A【点睛】此题主要考查了解直角三角形的知识,作出ADBC,进而得出相关线段的长度是解决问题的关键二、填空题(每题4分,共24分)13、【解析】根据题意画出图形,如图,连接OB,OC,过O作OMBC于M,BOC=360=60OB=OC,OBC是等边三角形OBC=60正六边形ABCDEF的周长为21,BC=216=1OB=BC=1,BM=OBsinOBC =114、【分析】设,得,根据旋转的性质得,1 =30,分别求得,继而求得答案.【详解】如图,AB与CD相交于G,过点E作EFAC延长线于点F,设,ACB=90,B=30,根据旋转的性质知
16、:,DCE=ACB=90,CDAB,1+BAC=90,1 =30,1+2+DCE =1800,2 =60,故答案为:【点睛】本题考查了旋转的性质以及锐角三角函数的知识,构建合适的辅助线,借助解直角三角形求解是解答本题的关键.15、【分析】根据,得出,利用相似三角形的性质解答即可【详解】,即,故答案为【点睛】本题考查了相似三角形的判定与性质关键是要懂得找相似三角形,利用相似三角形的性质求解16、或【分析】先从已知入手:由与抛物线形状相同则相同,且经过点,即把代入得,再根据对称轴为可求出,即可写出二次函数的解析式【详解】解:设所求的二次函数的解析式为:,与抛物线形状相同,又图象过点,对称轴是直线,
17、当时,当时,所求的二次函数的解析式为:或【点睛】本题考查了利用待定系数法求二次函数的解析式和二次函数的系数和图象之间的关系解答时注意抛物线形状相同时要分两种情况:开口向下,开口向上;即相等17、【解析】由切线长定理得CD=AD,CE=BE,PA=PB,表示出PED的周长即可解题.【详解】解:由切线长定理得CD=AD,CE=BE,PA=PB;所以PED的周长=PD+DC+CE+PE=PD+AD+BE+PE=PA+PB=2PA=16cm【点睛】本题考查了圆的切线,属于简单题,熟悉圆的切线长定理是解题关键.18、【详解】解:如图连接OE、OFCD是O的切线,OECD,OED=90,四边形ABCD是平
18、行四边形,C=60,A=C=60,D=120,OA=OF,A=OFA=60,DFO=120,EOF=360DDFODEO=30,的长=故答案为考点:切线的性质;平行四边形的性质;弧长的计算三、解答题(共78分)19、(1)50;(2)见解析;(3)1020名;(4)树状图见解析,【分析】(1)根据两种统计图可知喜欢跑步的有5名同学,占10%,即可求得总人数;(2)由(1)可求得喜欢足球的人数,继而补全条形统计图;(3)利用样本估计总体的方法,求得答案;(4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两位同恰好选中甲、乙两位同学的情况,再利用概率公式即可求出答案【详解】解:(
19、1)喜欢跑步的有名同学,占,在这次问卷调查中,一共抽查了学生数: (名);故答案为: 50;(2)喜欢足球人数:.补全统计图:(3)该校名同学中喜爱足球活动的有:(名).(4)画树状图得:共有种等可能的情况,恰好选中甲、乙两位同学的有种.【点睛】扇形图和条形图结合考查时,要注意将表示同一意义的量对应起来思考,条形图表示数量,扇形图表示百分比,通过两者的对应可以求出总量和各部分的值;可根据情况画树状图或用列表法求解,在利用画树状图或列表法表示所有等可能的结果时,要做到不重不漏20、(1)证明见解析;(2)证明见解析;(3)tanACD2【分析】(1)根据BM为切线,BC平分ABM,求得ABC的度
20、数,再由直径所对的圆周角为直角,即可求证;(2)根据三角形相似的判定定理证明三角形相似,再由相似三角形对应边成比例,即可求证;(3)由图得到ACDABD,根据各个角之间的关系求出AFD的度数,用AD表达出其它边的边长,再代入正切公式即可求得.【详解】(1)BM是以AB为直径的O的切线,ABM90,BC平分ABM,ABCABM45AB是直径ACB90,CABCBA45ACBCACB是等腰直角三角形;(2)如图,连接OD,OCDEEO,DOCOEDOEOD,EDOOCDEDOEDO,EODOCDEDOODCOD2DEDCOA2DEDCEODC(3)如图,连接BD,AD,DO,作BAFDBA,交BD
21、于点F,DOBOODBOBD,AOD2ODBEDO,CABCDB45EDO+ODB3ODB,ODB15OBDBAFDBA15AFBF,AFD30AB是直径ADB90AF2AD,DFADBDDF+BFAD+2ADtanACDtanABD2【点睛】本题考查圆的切线、角平分线的性质,相似三角形的性质以及三角函数中正切的计算问题,属综合中档题.21、(1),.(2)无变化;理由参见解析.(3),.【分析】(1)当=0时,在RtABC中,由勾股定理,求出AC的值是多少;然后根据点D、E分别是边BC、AC的中点,分别求出AE、BD的大小,即可求出的值是多少=180时,可得ABDE,然后根据,求出的值是多少
22、即可(2)首先判断出ECA=DCB,再根据,判断出ECADCB,即可求出的值是多少,进而判断出的大小没有变化即可(3)根据题意,分两种情况:点A,D,E所在的直线和BC平行时;点A,D,E所在的直线和BC相交时;然后分类讨论,求出线段BD的长各是多少即可【详解】(1)当=0时,RtABC中,B=90,AC=,点D、E分别是边BC、AC的中点,,BD=82=4,如图1,当=180时,可得ABDE,(2)如图2,当0360时,的大小没有变化,ECD=ACB,ECA=DCB,又,ECADCB,(3)如图3,AC=4,CD=4,CDAD,AD=AD=BC,AB=DC,B=90,四边形ABCD是矩形,B
23、D=AC=如图4,连接BD,过点D作AC的垂线交AC于点Q,过点B作AC的垂线交AC于点P,AC=,CD=4,CDAD,AD=,点D、E分别是边BC、AC的中点,DE=2,AE=AD-DE=8-2=6,由(2),可得,BD=综上所述,BD的长为或22、【解析】根据题意得出AE=6,结合平行四边形的面积得出AD=BC=4,继而知点D坐标,从而得出反比例函数解析式;【详解】解:顶点的坐标是,顶点的纵坐标是,又的面积是,则,反比例函数解析式为【点睛】本题主要考查待定系数法求反比例函数解析式,解题的关键是掌握平行四边形的面积公式及待定系数法求反比例函数的能力23、(1)yx2+2x+3;(2)存在,;
24、(3);Q点坐标为(0,)或(0, )或(0,1)或(0,3)【分析】(1)用待定系数法求解析式;(2)作PMx轴于M,作PNy轴于N,当POBPOC时,POBPOC,设P(m,m),则mm2+2m+3,可求m;(3)分类讨论:如图,当Q1AB90时,作AEy轴于E,证DAQ1DOB,得,即;当Q2BA90时,DBO+OBQ2OBQ2+O Q2B90,证BOQ2DOB,得,;当AQ3B90时,AEQ3BOQ390,证BOQ3Q3EA,即;【详解】解:(1)把A(1,4)代入ykx+6,k2,y2x+6,由y2x+60,得x3B(3,0)A为顶点设抛物线的解析为ya(x1)2+4,a1,y(x1
25、)2+4x2+2x+3 (2)存在当x0时yx2+2x+33,C(0,3)OBOC3,OPOP,当POBPOC时,POBPOC,作PMx轴于M,作PNy轴于N,POMPON45PMPN 设P(m,m),则mm2+2m+3,m,点P在第三象限,P(,) (3)如图,当Q1AB90时,作AEy轴于E,E(0,4)DA Q1DOB90,AD Q1BDODAQ1DOB,即,DQ1,OQ1,Q1(0,); 如图,当Q2BA90时,DBO+OBQ2OBQ2+O Q2B90DBOO Q2BDOBB O Q290BOQ2DOB,OQ2,Q2(0,); 如图,当AQ3B90时,AEQ3BOQ390,AQ3E+E
26、 AQ3AQ3E+B Q3O90E AQ3B Q3OBOQ3Q3EA,即,OQ324OQ3+30,OQ31或3,Q3(0,1)或(0,3) 综上,Q点坐标为(0,)或(0,)或(0,1)或(0,3)【点睛】考核知识点:二次函数,相似三角形.构造相似三角形,数形结合分类讨论是关键.24、(1)小路的宽为2米;(2)小路的宽为2米时修建小路和花圃的总造价最低.【分析】(1)设小路的宽为米,根据面积公式列出方程并解方程即可;(2)设小路的宽为米,总造价为元,先分别表示出花圃的面积和小路的面积,然后根据已知函数关系,即可求出总造价为与小路宽的函数关系式,化为顶点式,利用二次函数的增减性求最值即可求出此时的小路的宽.【详解】解:(1)设小路的宽为米,则可列方程解得:或(舍去)答:小路的宽为2米.(2)设小路的宽为米,总造价为元,则花圃的面积为平方米,小路面积为=平方米所以整理得:,对称轴为x=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 北京市昌平区临川育人学校2025届高三第六次模拟考试化学试卷含解析
- 2024-2025学年下学期高三英语人教版同步经典题精练之固定搭配和句型
- 怎做纹绣培训
- ESC感染性心内膜炎指南
- 护肤管理软件应用
- 护理管理学组织
- 探索物联网在医疗行业的应用
- 山东省潍坊市奎文区瀚声学校2024-2025学年六年级下学期3月月考语文试题(有答案)
- 用微课学 图形图像处理(Photoshop CS6)课件 项目一 基本操作
- 【大数据百家讲坛】2025年DeepSeek、Manus与AI+Agent行业现状报告
- 施工队长培训课件
- 信息技术系统集成项目投标书
- 面部恶性肿瘤的个案护理
- 生产加工型小微企业安全管理考试(含答案)
- 小学数学作业评价分析报告
- 物业服务方案-物业增值服务方案
- 深入理解Zabbix监控系统
- 医院感染暴发的应急预案与应急处置演练
- 分析铝粉储存过程中可能发生火灾爆炸的原因
- 幼儿园幼儿园中班数学活动《9的认识》
- Word操作练习题(解析和答案)
评论
0/150
提交评论