陈经纶中学2023学年九年级数学第一学期期末教学质量检测试题含解析_第1页
陈经纶中学2023学年九年级数学第一学期期末教学质量检测试题含解析_第2页
陈经纶中学2023学年九年级数学第一学期期末教学质量检测试题含解析_第3页
陈经纶中学2023学年九年级数学第一学期期末教学质量检测试题含解析_第4页
陈经纶中学2023学年九年级数学第一学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1在ABC与DEF中,如果B=50,那么E的度数是( )A50;B60;C70;D802已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x2时,y随x的

2、增大而增大,且-2x1时,y的最大值为9,则a的值为A1或B-或CD13抛物线y=x2+2x3的最小值是()A3 B3 C4 D44如图,要测量小河两岸相对的两点P,A的距离,可以在小河边取PA的垂线PB上的一点C,测得PC=100米,PCA=35,则小河宽PA等于()A100sin35米B100sin55米C100tan35米D100tan55米5如图,AC是O的直径,弦BDAO于E,连接BC,过点O作OFBC于F,若BD=8cm,AE=2cm,则OF的长度是()A3cmB cmC2.5cmD cm6下列事件中,属于不确定事件的有()太阳从西边升起;任意摸一张体育彩票会中奖;掷一枚硬币,有国

3、徽的一面朝下;小明长大后成为一名宇航员A B C D7如图,在中,垂足为,若,则的值为( )ABCD8如图,若二次函数y=ax2+bx+c(a0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(1,0),则二次函数的最大值为a+b+c;ab+c0;b24ac0;当y0时,1x3,其中正确的个数是()A1B2C3D49如图,AB是O的弦,BAC30,BC2,则O的直径等于( )A2B3C4D610已知某函数的图象与函数的图象关于直线对称,则以下各点一定在图象上的是( )ABCD11二次函数的图象的顶点坐标为( )ABCD12下列说法中正确的是( )A“任意画出一个等边三角形,它是轴对

4、称图形”是随机事件B“任意画出一个平行四边形,它是中心对称图形”是必然事件C“概率为0.0001的事件”是不可能事件D任意掷一枚质地均匀的硬币10次,正面向上的一定是5次二、填空题(每题4分,共24分)13关于的一元二次方程有两个不相等的实数根,则整数的最大值是_14抛物线yax2+bx+c经过点A(4,0),B(3,0)两点,则关于x的一元二次方程ax2+bx+c0的解是_15如图,在中,若,则的值为_16若反比例函数y=的图象在每一个象限中,y随着x的增大而减小,则m的取值范围是_17在ABC中,C90,cosA,则tanA等于 18如图,反比例函数的图像过点,过点作轴于点,直线垂直线段于

5、点,点关于直线的对称点恰好在反比例函数的图象上,则的值是_三、解答题(共78分)19(8分)计算:(1)x(x2y)(x+y)(x+3y)(2)(+a+3)20(8分)已知函数ymx1(1m+1)x+1(m0),请判断下列结论是否正确,并说明理由(1)当m0时,函数ymx1(1m+1)x+1在x1时,y随x的增大而减小;(1)当m0时,函数ymx1(1m+1)x+1图象截x轴上的线段长度小于121(8分)已知:ABC在直角坐标平面内,三个顶点的坐标分别为B(3,4)、A(3,2)、C(1,0),正方形网格中,每个小正方形的边长是一个单位长度(1)画出ABC向下平移4个单位长度得到的A1B1C1

6、,点C1的坐标是 ;(2)以点B为位似中心,在网格上画出A2B2C2,使A2B2C2与ABC位似,且位似比为1:2,点C2的坐标是 ;(画出图形)(3)若M(a,b)为线段AC上任一点,写出点M的对应点M2的坐标 22(10分)如图,AB为O的直径,点C在O上,延长BC至点D,使DC=CB,延长DA与O的另一个交点为E,连结AC,CE(1)求证:B=D;(2)若AB=4,BC-AC=2,求CE的长23(10分)问题探究:(1)如图所示是一个半径为,高为4的圆柱体和它的侧面展开图,AB是圆柱的一条母线,一只蚂蚁从A点出发沿圆柱的侧面爬行一周到达B点,求蚂蚁爬行的最短路程(探究思路:将圆柱的侧面沿

7、母线AB剪开,它的侧面展开图如图中的矩形则蚂蚁爬行的最短路程即为线段的长)(2)如图所示是一个底面半径为,母线长为4的圆锥和它的侧面展开图,PA是它的一条母线,一只蚂蚁从A点出发沿圆锥的侧面爬行一周后回到A点,求蚂蚁爬行的最短路程(3)如图所示,在的条件下,一只蚂蚁从A点出发沿圆锥的侧面爬行一周到达母线PA上的一点,求蚂蚁爬行的最短路程24(10分)如图,已知AB是O的直径,点C在O上,AD垂直于过点C的切线,垂足为D,且BAD80,求DAC的度数25(12分)如图,在中,点为上一点且与不重合,交于(1)求证:;(2)设,求关于的函数表达式;(3)当时,直接写出_26数学兴趣小组想利用所学的知

8、识了解某广告牌的高度,已知CD2m经测量,得到其它数据如图所示其中CAH37,DBH67,AB10m,请你根据以上数据计算GH的长(参考数据tan67, tan37)参考答案一、选择题(每题4分,共48分)1、C【分析】根据已知可以确定;根据对应角相等的性质即可求得的大小,即可解题【详解】解:,与是对应角,与是对应角,故故选:C【点睛】本题考查了相似三角形的判定及性质,本题中得出和是对应角是解题的关键2、D【解析】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a0,然后由-2x1时,y的最大值为9,可得x=1时,y=9,即可求出a【详解】二次函数y=ax2+2ax+3a2+3

9、(其中x是自变量),对称轴是直线x=-=-1,当x2时,y随x的增大而增大,a0,-2x1时,y的最大值为9,x=1时,y=a+2a+3a2+3=9,3a2+3a-6=0,a=1,或a=-2(不合题意舍去)故选D【点睛】本题考查了二次函数的性质,二次函数y=ax2+bx+c(a0)的顶点坐标是(-,),对称轴直线x=-,二次函数y=ax2+bx+c(a0)的图象具有如下性质:当a0时,抛物线y=ax2+bx+c(a0)的开口向上,x-时,y随x的增大而减小;x-时,y随x的增大而增大;x=-时,y取得最小值,即顶点是抛物线的最低点当a0时,抛物线y=ax2+bx+c(a0)的开口向下,x-时,

10、y随x的增大而增大;x-时,y随x的增大而减小;x=-时,y取得最大值,即顶点是抛物线的最高点3、D【解析】把y=x2+2x3配方变成顶点式,求出顶点坐标即可得抛物线的最小值.【详解】y=x2+2x3=(x+1)21,顶点坐标为(1,1),a=10,开口向上,有最低点,有最小值为1故选:D【点睛】本题考查二次函数最值的求法:求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,熟练掌握并灵活运用适当方法是解题关键.4、C【分析】根据正切函数可求小河宽PA的长度【详解】PAPB,PC=100米,PCA=35,小河宽PA=PCtanPCA=100tan35米故

11、选C【点睛】考查了解直角三角形的应用,解直角三角形的一般过程是:将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题)根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案5、D【解析】分析:根据垂径定理得出OE的长,进而利用勾股定理得出BC的长,再利用相似三角形的判定和性质解答即可详解:连接OB,AC是O的直径,弦BDAO于E,BD=1cm,AE=2cm在RtOEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2解得:OE=3,OB=3+2=5,EC=5+3=1在RtEBC中,BC=OFBC,OFC=CE

12、B=90C=C,OFCBEC,即,解得:OF= 故选D点睛:本题考查了垂径定理,关键是根据垂径定理得出OE的长6、C【解析】因为不确定事件即随机事件是指在一定条件下,可能发生,也可能不发生的事件,确定事件包括必然事件和不可能事件,所以太阳从西边升起,是不可能发生的事件,是确定事件, 任意摸一张体育彩票会中奖,是不确定事件, 掷一枚硬币,有国徽的一面朝下,是不确定事件, 小明长大后成为一名宇航员,是不确定事件,故选C.点睛:本题考查确定事件和不确定事件的定义,解决本题的关键是要熟练掌握确定事件和不确定事件的定义.7、D【分析】在中,根据勾股定理可得,而B=ACD,即可把求转化为求【详解】在中,根

13、据勾股定理可得:B+BCD=90,ACD+BCD=90,B=ACD,=故选D【点睛】本题考查了了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系,难度适中8、B【解析】分析:直接利用二次函数图象的开口方向以及图象与x轴的交点,进而分别分析得出答案详解:二次函数y=ax2+bx+c(a0)图象的对称轴为x=1,且开口向下,x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故正确;当x=1时,ab+c=0,故错误;图象与x轴有2个交点,故b24ac0,故错误;图象的对称轴为x=1,与x轴交于点A、点B(1,0),A(3,0),故当y0时,1x3,故正确故选B点睛:此题主要考查了二次

14、函数的性质以及二次函数最值等知识,正确得出A点坐标是解题关键9、C【分析】如图,作直径BD,连接CD,根据圆周角定理得到DBAC30,BCD90,根据直角三角形的性质解答【详解】如图,作直径BD,连接CD,BDC和BAC是所对的圆周角,BAC30,BDCBAC30,BD是直径,BCD是BD所对的圆周角,BCD90,BD2BC4,故选:C【点睛】本题考查圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;半圆(或直径)所对的圆周角是直角;90圆周角所对的弦是直径;熟练掌握圆周角定理是解题关键10、A【分析】分别求出各选项点关于直线对称点的坐标,代入函数验证是否

15、在其图象上,从而得出答案【详解】解:A 点关于对称的点为点,而在函数上, 点在图象上; B 点关于对称的点为点,而不在函数上,点不在图象上; 同理可C 、D不在图象上故选:【点睛】本题考查反比例函数图象及性质;熟练掌握函数关于直线的对称时,对应点关于直线对称是解题的关键11、B【分析】根据二次函数顶点式的性质即可得答案.【详解】是二次函数的顶点式,顶点坐标为(0,-1),故选:B.【点睛】本题考查二次函数的性质,熟练掌握二次函数的三种形式是解题关键.12、B【解析】试题分析:A“任意画出一个等边三角形,它是轴对称图形”是必然事件,选项错误;B“任意画出一个平行四边形,它是中心对称图形”是必然事

16、件,选项正确;C“概率为0.0001的事件”是随机事件,选项错误;D任意掷一枚质地均匀的硬币10次,正面向上的可能是5次,选项错误故选B考点:随机事件二、填空题(每题4分,共24分)13、1【分析】若一元二次方程有两不等实数根,则而且根的判别式,建立关于的不等式,求出的取值范围【详解】解:一元二次方程有两个不相等的实数根,且,解得且,故整数的最大值为1,故答案为:1【点睛】本题考查了一元二次方程的定义及根的判别式,特别要注意容易忽略方程是一元二次方程的前提即二次项系数不为214、4或1【分析】根据二次函数与轴的交点的横坐标即为一元二次方程根的性质,即可求得方程的解.【详解】抛物线yax2+bx

17、+c经过点A(4,0),B(1,0)两点,则ax2+bx+c0的解是x4或1,故答案为:4或1【点睛】本题考查二次函数与轴的交点和一元二次方程根的关系,属基础题.15、【分析】根据相似三角形的性质,得出,将AC、AB的值代入即可得出答案【详解】即DC=故答案为:【点睛】本题考查了相似三角形的性质,熟练掌握性质定理是解题的关键16、m1【解析】反比例函数的图象在其每个象限内,y随x的增大而减小,0,解得:m1,故答案为m1.17、.【解析】试题分析:在ABC中,C90,cosA,.可设.根据勾股定理可得.考点:1.锐角三角函数定义;2.勾股定理.18、【分析】设直线l与y轴交于点M,点关于直线的

18、对称点,连接MB,根据一次函数解析式确定PMO=45及M点坐标,然后根据A点坐标分析B点坐标,MB的长度,利用对称性分析B的坐标,利用待定系数法求反比例函数解析式,然后将B坐标代入解析式,从而求解.【详解】解:直线l与y轴交于点M,点关于直线的对称点,连接MB由直线中k=1可知直线l与x轴的夹角为45,PMO=45,M(0,b)由,过点作轴于点B(0,2),MB=b-2B(2-b,b)把点代入中解得:k=-4恰好在反比例函数的图象上把B(2-b,b)代入中解得:(负值舍去) 故答案为:【点睛】本题考查了待定系数法求反比例函数、正比例函数的解析式,轴对称的性质,函数图象上点的坐标特征,用含b的代

19、数式表示B点坐标是解题的关键三、解答题(共78分)19、(1)6xy3y2;(2)【分析】(1)根据整式的混合运算顺序和运算法则,即可求解;(2)根据分式的混合运算顺序和运算法则即可求解【详解】(1)原式x22xy(x2+3xy+xy+3y2)x22xyx23xyxy3y26xy3y2;(2)原式(+) (a2)【点睛】本题主要考查整式的混合运算和分式的混合运算,掌握合并同类项法则和分式的通分和约分是解题的关键.20、(1)详见解析;(1)详见解析【分析】(1)先确定抛物线的对称轴为直线x1+,利用二次函数的性质得当m1+时,y随x的增大而减小,从而可对(1)的结论进行判断;(1)设抛物线与x

20、轴的两交的横坐标为x1、x1,则根据根与系数的关系得到x1+x1,x1x1,利用完全平方公式得到|x1x1|1|,然后m取时可对(1)的结论进行判断【详解】解:(1)的结论正确理由如下:抛物线的对称轴为直线,m0,当m1+时,y随x的增大而减小,而11+,当m0时,函数ymx1(1m+1)x+1在x1时,y随x的增大而减小;(1)的结论错误理由如下:设抛物线与x轴的两交的横坐标为x1、x1,则x1+x1,x1x1,|x1x1|1|,而m0,若m取时,|x1x1|3,当m0时,函数ymx1(1m+1)x+1图象截x轴上的线段长度小于1不正确【点睛】本题考查了二次函数的增减性问题,与x轴的交点问题

21、,熟练掌握二次函数的性质是解题的关键21、(1)作图见解析,(1,-4);(2)作图见解析,(2,2);(3)(,)【分析】(1)将点A、B、C分别向下平移4个单位得到对应点,再顺次连接可得;(2)利用位似图形的性质得出对应点位置,进而得出答案;(3)根据(2)中变换的规律,即可写出变化后点C的对应点C2的坐标【详解】解:(1)如图,A1B1C1即为所求,点C1的坐标是(1,-4),故答案为:(1,-4);(2)如图所示,A2BC2即为所求,点C2的坐标是(2,2),故答案为:(2,2);(3)若M(a,b)为线段AC上任一点,则点M的对应点M2的坐标为:(,)故答案为:(,)【点睛】此题主要

22、考查了位似变换,正确得出图形变化后边长是解题关键22、(1)见解析(2)【分析】(1)由AB为O的直径,易证得ACBD,又由DC=CB,根据线段垂直平分线的性质,可证得AD=AB,即可得:B=D;(2)首先设BC=x,则AC=x-2,由在RtABC中,可得方程:,解此方程即可求得CB的长,继而求得CE的长.【详解】解:(1)证明:AB为O的直径,ACB=90ACBCDC=CBAD=ABB=D(2)设BC=x,则AC=x2,在RtABC中,解得:(舍去).B=E,B=D,D=ECD=CECD=CB,CE=CB=.23、(1)蚂蚁爬行的最短路程为1; (2)最短路程为;(3)蚂蚁爬行的最短距离为【

23、分析】(1)蚂蚁爬行的最短路程为圆柱侧面展开图即矩形的对角线的长度,由勾股定理可求得;(2)蚂蚁爬行的最短路程为圆锥展开图中的AA的连线,可求得PAA是等边三角形,则AA=PA=4;(3)蚂蚁爬行的最短路程为圆锥展开图中点A到PA的距离【详解】(1)由题意可知:在 中,即蚂蚁爬行的最短路程为1 (2)连结则的长为蚂蚁爬行的最短路程,设为圆锥底面半径,为侧面展开图(扇形)的半径, 则由题意得:即是等边三角形最短路程为 (3)如图所示是圆锥的侧面展开图,过作于点则线段的长就是蚂蚁爬行的最短路程 在RtACP中,P=60,PAC=30PC=PA=4=2 AC=蚂蚁爬行的最短距离为 【点睛】本题考查了勾股定理,矩形的性质,圆周长公式,弧长公式,等边三角形的判定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论