气象资料的分析与预测问题建模_第1页
气象资料的分析与预测问题建模_第2页
气象资料的分析与预测问题建模_第3页
气象资料的分析与预测问题建模_第4页
气象资料的分析与预测问题建模_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、摘要:本文建立了用于气象资料的分析与预测的数学模型。经对比该城市与北京的海拔、气候等极为相似,因此,我们以北京的标准气象指数为参照建立模型。月的平均气压、平均气温、平均相对湿度、平均风速、最高气压、最高气温、最高相对湿度、最高风速和北京的标准气候指数为参数,通过 matlab 建立与之相关的方程来确定该城市当月的气象质量指数,按照指数数值的大小分为优、良、差三大类,从而评价每个月年数据对比趋势图,对该城市气候进行整体评价和中长期的分析预测。然后针对问题二:对影响极端天气发生的主要指标,比如:降水、温度等建立监控预影响因素是平均气压、平均气温、平均湿度、日照时数、地面平均温度、降水量等,通过ma

2、tlab 编写程序验证取舍得出平均气压、平均气温、平均湿度、日照时数、地面平均温最后,带入两年内的累积气象资料进行验证。最后我们评价了模型的优缺点,并对模型的不足之处进行了改进。关键词:权重综合气象质量指数;多元线性回归;正态分布。11.问题重述近年来,我国极端天气呈现出发生频率加大、致灾性加重等新特点,极端天气趋于常态化。虽然部分地方加大防灾减灾建设并取得一些成效,但相比现实需求,对极端天气监测预警手段仍然不足,防御应对体系建设仍存在明显短板。附件中是某城市两年内连续的日气象资料,包括气压、温湿度、降水量、风力风向等多项气象资料指标。请你完成以下任务:请详细给出评价的指标体系以及评级和预测的

3、数学模型;(2)对影响极端天气发生的主要指标,比如:降水、温度等建立监控预报体系的数学模型,并用两年内的累积气象资料进行验证。注意:这里的主要指标并不限于降水和温度等指标,你们也可根据实际需求自行选择。注:该城市的海拔约为 30-50 米。2. 问题的背景与分析虽然我国幅员辽阔,地形复杂,但各地的气象在空间分布上仍有一定规律。我国分布着世界上最大的温带季风区,秦岭淮河以北是温带季风气候,这里夏季高温多雨,冬季寒冷干燥。冬冷夏热,雨热同期;秦岭淮河以南是亚热带季风气候,这里夏季高温多雨,冬季温和少雨,热量充足,气温年较差较小,降水丰富,但季节变化较大;西部的新疆、宁夏、内蒙古、青海、甘肃等多是温

4、带大陆性气候,这里冬冷夏热,年温差大,降水集中,四季分明,年雨量较少,大陆性强;面积广大的青藏高原等地是高原山地气候,这里海拔高,气温低,但辐射强,日照丰富,降水少,冬半年风力强劲,气温的年较差小,日较差大。近年来,我国极端天气呈现出发生频率加大、致灾性加重等新特点,极端天气趋于常态化。虽然部分地方加大防灾减灾建设并取得一些成效,但相比现实需求,对极端天气监控预测是我们的宗旨;满足人民对气象信息的多种需求是我们的目标。因此,准确的对极端天气监测预警,有着十分重要的意义。模型的假设与符号说明模型的假设:1假设气象部门提供的实测数据是准确的,能较真实地反映该城市的气象情况。2假设北京气象与该城市气

5、象相似。3假定网上所给的北京标准气候指标可靠。4. 假定最高气温与与平均气压、平均气温、平均湿度、日照时数、地面平均温度成线性函数。5. 假定最高气温时随机变量,服从均值为零的正态分布。符号说明:Ii第 i 项气象因素指数;2N参数项数;C imax第i项气象因素(月) 均最大值;C i 第i项气象因素( 月)平均值;Si 第i顶气象因素标准值;Qi第i项气象因素指数的权数;P i第i 项气象因素指数的修正;I综合气象质量指数;K权重综合气象质量指数。Y最高气温;x1平均气压;x2平均气温;x3平均湿度;x4日照时数;x5地面平均气温;biXi的回归系数;3.气象评价体系模型的建立与修正C4、

6、最高气压C1极、最高气温C2极、最高相对湿度C3极、最高风速C4极和北京的标准气候指数Simatlab建立与之相关的函数方程来确定该城市当月的综合气象质量指数I,然后在评级列表中查出气象质量等级。3.1综合气象质量指数法计算公式: *I i(1)(2)nI P*Iiii1其中第i顶气象因素评价标准Si从表11北京气象标准指数表中获取。表31 北京市标准气象值平均气 平均气 极端最 极端最高气温 低气温 降水量 对湿度 速(%)平均相 平均风1月 1024.2 -3.7 12.9 -18.3 2.7 442月 1022 -0.7 19.8 -16 4.9 442.62.833月4月5月6月7月8

7、月9月10月11月12月8.34646536175776861574921.234.278.1185.2159.745.521.87.41016.7 13.11021.3 4.61023.8 -1.5-3.5-10.6-15.62.12.42.619.52.8I,然后从表12中对应查出气象质量等级。表32 气象质量分级标准综合指数评价等级1.101.30良1.101.30差优可见, 综合气象质量指数法计算简单, 但综合气象质量指数采用算术平均值计算 ,所参加评价的气象环境因素指数在计算中权重值相同, 主要污染物对环境空气质量的影响评价结果偏低。3.2综合指数法的修正为能更加客观地评价气象质量,

8、 在综合指数法的基础上, 给各单项指数根据一定条件赋予一个权重值, 各单项指数与权重值的乘积之和为评价综合气象质量指数 , 并将此法称为权重综合气象质量指数法, 计算公式如下:IQ ,0Q iiniIi设(i=1,2,3n)(3)i10.5Q 1的个数,0tns,0Q 0.05若S为的个数, 且0Sn,t为ii分指数权重赋值公式:0Q 0.050.05,iQ0.05st),0.05Q 0.5instiQi(4)i10.5,0.5Q 1i4nnP1K P I*iii则且。(5)i1i10Q 0.05修正综合指数法说明:对分指数太小或太大分指数赋值, 即或i0.5Q 1时,i0.05Q 0.5对分

9、指数取值偏差不大,公式( 4) 求出时, 用加权算术平均数计算分指数权数, 用i分指数权数, 再由公式( 5) 求出综合指数。3.3权重综合指数法的应用表33 该市第一年气象质量指数对照表质质月 气压指 气温指 湿度指 风力指 综合指 量 权重综 量份 数 数 数 数 数法 等 合指数 等级级一 0.9917 1.0651 1.4195 0.8427 1.0798 优 1.1214 良二 0.9933 1.0339 1.3652 1.2778 1.1676 良 1.1888 良三 0.9903 1.0288 1.3578 0.7067 1.0209 优 1.0731 优四 1.0002 1.0

10、231 1.5380 0.6708 1.0580 优 1.1490 良五 0.9975 1.0187 1.2131 0.7067 0.9840 优 1.0173 优六 1.0018 1.0121 1.2850 0.5780 0.9692 优 1.0351 优七 0.9988 1.0077 1.1120 0.6033 0.9305 优 0.9710 优八 0.9992 1.0079 1.0918 0.8545 0.9883 优 0.9957 优九 0.9978 1.0148 1.1440 0.6099 0.9416 优 0.9839 优十 1.0017 1.0131 1.1192 0.6238

11、0.9395 优 0.9771 优1.0014 1.0234 1.2566 0.6353 0.9792 优 1.0226 优一0.9990 1.0234 1.6610 0.5801 1.0659 优 1.1332 良二从表 33 可以看出,使用两种方法计算的综合污染指数略有不同,权重综合气象质量指数法计算结果略高于综合气象质量指数法,该市第一年的三月、五月、六月、七月、八月、九月、十月、十一月的权重气象质量指数均为优。3.4权重综合指数法的检验候的差或商值来检验模型的正确性。5将该市第二年每个月的平均气压、平均气温、平均相对湿度、平均风速、与北京市标准气象值做对比,画出折线图如图:表 35 该

12、市第二年月平均气压与标准气压对比折线图1234567890111表 36 该市第二年月平均气温与标准气温对比折线图气温平均标准气温0-5-10月1份月月月月月月月月月月234567890111表 37 该市第二年月平均湿度与标准湿度对比折线图湿度平均标准湿度份月月月月月月月月月月月12345678901116风速表差值较小者的为优,其次为良,最后为差。做差得:二月份平均气压差值:1018.2-1022=-3.8平均气温差值:-1.4+0.7=-0.7平均湿度差值:0.58-0.44=0.14平均风力差值:1.4-2.8=-1.4七月份平均气压差值:993.6-999.7=-6.1平均气温差值:

13、28.7-26.2=2.5平均湿度差值:0.62-0.75=-0.13平均风力差值:1.5-2.1=-0.6十一月份平均气压差值:1011.5-1021.3=-9.8平均气温差值:9.9-4.6=5.3平均湿度差值:0.45-0.57=-0.12平均风力差值:1.3-2.4=-1.1质量等级如表 34表 34 该市第二年气象质量指数对照表优优差良优差十一月1.393351.803法计算结果相同。3.5 结论:权重综合污染指数法对极端值进行了处理 , 根据分指数的大小不同分别赋予其不同 运用此法对该市第二年的数据进行检验,评价结果也与实际情况能较好吻合。4.对该市气候的整体评价及中长期预测7该市

14、的气候整体表现为夏季高温多雨,冬季寒冷干燥,冬冷夏热,雨热同期,属于典型的温带季风气候。检测数据 权重气象评估1.1214合气象质量会逐渐变差,平均气压有缓慢降低趋势,平均气温有缓慢升高趋势,最高气温8缓慢降低趋势,最低气温缓慢升高趋势,平均湿度缓慢降低趋势,降水量缓慢降低,平均风力缓慢增大等。5极端天气监测预报体系模型的建立5.1建立模型:最高气温Y,建立监测预报的数学模型。由假设可知,最高气温Y是随机变量,它服从均值为零的正态分布,平均气压x1、平均气温x2、平均湿度x3、日照时数x4、地面平均温度x5等是影响最高气温Y的因素,所以可以建立多元线性回归模型:y b b x b x b x

15、b x01 1223 34 4 N(0, )2建模所需的知识点及其在Matlab中实现的方法:求解多元线性回归方程用 Matlab 中的 regress 函数,函数命令形式为:b,bint,r,rint,stats=regress (Y,x,alpha) 其中因变量数据向量Y和自变量数据向量均按以下方式输入:Y=y1 y2 ynx=x1 x2 xnAlpha为显著性水平 (缺省时设定为0.05)Regress为回归系数的估计值为回归系数估计值b的置信区间;r、rint为残差向量及其置信区间;stats是用于检验回归模型的越接近1说明引入方程的自变量与因变量的相关与Y是相关系数,第二个是F统计量

16、,第三个是与统计量相对应的概率p,当pF0.05(5,23),可以认为Y与x1、x2、x3、x4、x5之间显著地有线性关系。多元线性回归方程中的拟合优度检验:由运行结果可知:R2=1,多元线性回归方程拟合度很高。多元线性回归方程中的方差检验:Qn-22 =0.118642n ( )y y其中Q为iii15.2验证模型:多元线性回归方程大致反映了变量Y与xi之间的变化规律。但是,由于Y与x之间的关系不是确定的,所以对于一组x的值,只能得到Yi的估计值。它的精确性如何?对此,我们应当对Yi进行区间估计,即对于给定的置信度1 - ,求出Yi的置信区间。10对于x的任一值,我们得到置信度为95%的预测

17、区间是(Y-1.96s , Y +1.96s )其中当n充分大时,xi与Yi近似的服从正态分布N(Yi , s2) 方差为s2n (y )e2S2 =nSe =iii1se2标准差 S = n根据两年内的累积气象资料可得到相应的置信区间:表51 置信区间的分布Y(14.50 ,15.85)(10.93 ,12.28)(14.50 ,15.85)(22.04 ,23.39)17.1(27.01 ,28.36)5 998.7 21.66 998 24.9(29.77 ,31.12)(30.70 ,32.05)7 994.4 26.48 998.8 24.79 1005 21.7(28.77 ,30

18、.12)(26.45 ,27.80)1 1012.14.9(19.76 ,21.11)5957185.4 15.2197.5 6.921.313.420.4313.1781 1014.(12.50 ,111 1018.2 4(3.044.39),0.26997.9-143.72平 均 平 均 平 均 日照时 地 面 平 最 高( 1.99 ,3.34)-1.9( 1.71 ,3.06)-1.4858343653506270645145-0.810.120.825.131.832.127.823.815.68(13.68 ,15.03)13.924.326.234.434.130.927.121

19、.615.514.3524.3926.5033.8634.1231.1827.4921.8315.73(23.72 ,25.07)17.8(25.83 ,27.18)5 998.8 20.76 991.3 27.87 993.6 28.7(33.19 ,34.54)(33.44 ,34.79)(30.51 ,31.86)(26.82 ,28.17)(21.15 ,22.50)15.89.9189.9195.41 1011.1 5(15.05 ,16.40) Yi 的正确合理性。5.3 模型的评价:极端天气监测预报模型最大优点在于对原始数据拟合时 , 采用多种方法进行, 使之愈来愈完善, 具有很

20、高的拟合精度和适度性在此基础上 , 对模型作进一步讨论便可得到 从而进一步说明模型是合理的。不过,此模型的影响因素有限,而且仅用每年的月平均值计算,不能全面预测到每一天。126.参考文献1 王丽霞 2 费浦生 羿旭明 数学建模及其基础知识详解 武汉大学出版社,2006.57.附录模型一Matlab命令:函数式function Ii=f4(Ci,Di,Si)Ii=(sqrt(Ci.*Di)./Sifunction=f6(Ai,Bi,Ci,Ei)Mi= Ai+Bi+Ci+Ei气压均值Di=1022.4 ,1019.3,1006,1017.7,1007.7,1008,1002.7,1007.1,10

21、11.6,1024.1,1031.1,1027.2Si=1024.2,1022,1017.4,1010,1005.7,1001.2,999.7,1003.7,1010.5,1016.7,1021.3,1023.8Ci=1009.1,1011,1009.1,1002.7,998.7,998,994.4,998.8,1005,1012.7,1014.4,1018.4 ;Ii=f4(Ci,Di,Si)Ii =0.9917 0.9933 0.9903 1.0002 0.9975 1.0018 0.99880.9992 0.9978 1.0017 1.0014 0.9990气温均值Ci=9.6,5.5,

22、9.6,17.1,21.6,24.9,26.4,24.7,21.7,14.9,8,0.2;Si=-3.7,-0.7,5.8,14.2,19.9,24.4,26.2,24.9,20,13.1,4.6,-1.5;Di=18.1,11.6,18.1,24.6,29.2,31.1,30.6,29.8,27,18.8,14.2,9.6;Ii=f4(Ci,Di,Si)Ii =Ii =Columns 1 through 11-3.5627 -11.4107 2.2727 1.4444 1.2620 1.1405 1.08481.0896 1.2103 1.2776 2.3170Column 12-0.923

23、8华氏温度Ci =282.6000 278.5000 282.6000 290.1000 294.6000 297.9000 299.4000297.7000 294.7000 287.9000 281.0000 273.2000Si =269.3000 272.3000 278.8000 287.2000 292.9000 297.4000 299.200013297.9000 293.0000 286.1000 277.6000 271.5000Di =291.1000 284.6000 291.1000 297.6000 302.2000 304.1000 303.6000302.800

24、0 300.0000 291.8000 287.2000 282.6000Ci=282.6000 278.5000 282.6000 290.1000 294.6000 297.9000 299.4000297.7000 294.7000 287.9000 281.0000 273.2000;Di=291.1000284.6000291.1000297.6000302.2000304.1000303.6000 302.8000 300.0000 291.8000 287.2000 282.6000;Si=269.3000272.3000278.8000287.2000292.9000297.4

25、000299.20001.0121297.90001.0077293.0000 286.1000 277.6000 271.5000;Ii=f4(Ci,Di,Si)Ii =1.06511.01481.03391.01311.02881.02341.02311.02341.01871.0079温湿Ci=0.47,0.41,0.47,0.55,0.53,0.64,0.74,0.76,0.68,0.59,0.57,0.69;Di=0.83,0.88,0.83,0.91,0.78,0.96,0.94,0.93,0.89,0.79,0.90,0.96;Si=0.44,0.44,0.46,0.46,0.5

26、3,0.61,0.75,0.77,0.68,0.61,0.57,0.49;Ii=f4(Ci,Di,Si)Ii =Ii =Columns 1 through 111.41951.14401.36521.11921.35781.25661.53801.21311.28501.11201.0918Column 121.6610风力Ci=1.5,1.6,1.5,1.44,1.4,1.16,1.07,0.91,0.93,0.78,0.93,0.91;Si=2.6,2.8,3.1,3.2,2.9,2.5,2.1,1.8,2.0,2.1,2.4,2.6;Di=3.2,8,3.2,3.2,3,1.8,1.5,

27、2.6,1.6,2.2,2.5,2.5;Ii=f4(Ci,Di,Si)Ii =Ii =Columns 1 through 110.84270.60991.27780.62380.70670.63530.67080.70670.57800.60330.8545Column 120.5801求和Ai=0.99170.9992 0.99781.0288 1.02310.99331.00171.01870.99031.00020.99751.00180.99881.00141.0121 1.00770.9990;Bi=1.06511.0079 1.01481.03391.0131141.02341.2

28、8501.27780.62381.0234;Ci= 1.41951.36521.11920.57801.35781.2566 1.6610;Ei= 0.84270.6033 0.8545 0.60991.53801.21311.11200.70671.09180.67081.14400.70670.6353 0.5801;Mi=f6(Ai,Bi,Ci,Ei)Mi =4.31904.67023.75784.08363.91674.23214.26353.93603.87693.72183.9534矩阵Iij =3.76650.99170.99780.99331.00170.99031.00141

29、.00020.99900.99751.01871.00181.01211.21310.70670.99881.00770.99921.06511.00791.03391.02881.02311.02341.35781.25660.70670.63531.01481.41951.09180.84270.85451.01311.02341.11920.62381.36521.14401.27780.60991.53801.66101.28500.57801.11200.60330.67080.5801Iij的反转矩阵0.99171.06511.41950.84270.99331.03391.028

30、81.02311.01871.01211.00771.00791.01481.01311.02341.02341.36521.35781.53801.21311.28501.11201.09181.14401.11921.25661.66101.27780.70670.67080.70670.57800.60330.85450.60990.62380.63530.58010.99031.00020.99751.00180.99880.99920.99781.00171.00140.9990Gi= 0.99171.06511.41950.8427;Q1=Gi./ 4.3190Q1 =0.2296

31、 Gi= 0.9933;Q2=Gi./ 4.6702Q2 =0.24660.32870.19511.03391.3652 1.27780.21270.22140.29230.273615 Gi= 0.9903;Q3=Gi./ 4.0836Q3 =1.02881.02311.01871.01211.35780.70670.2425 Gi= 1.0002;Q4=Gi./ 4.2321Q4 =0.25190.33251.53800.17310.67080.2363 Gi= 0.9975;Q5=Gi./ 3.936Q5 =0.24170.36341.21310.15850.70670.25340.25

32、880.30821.28500.1795 Gi=1.00180.5780 ;Q6=Gi./ 3.8769Q6 =0.25840.26110.33150.14911.1120 Gi=0.9988;Q7=Gi./ 3.7218Q7 =1.00771.00791.01480.60330.2684 Gi= 0.9992;Q8=Gi./ 3.9534Q8 =0.27080.29881.09180.16210.85450.25270.25490.27621.14400.2161 Gi=0.99780.6099;Q9=Gi./ 3,7665Q9 =0.33260.33830.38131.01310.2033

33、1.1192 Gi= 1.0017;Q10=Gi./3.7578Q10 =0.62380.26660.26960.29781.02340.16601.2566 Q11= 1.0014;Q11=Gi./ 3.9167Q11 =0.63530.58010.25580.25870.28581.02340.15931.6610 Q12= 0.9990;Q12=Gi./ 4.2635Q12 =160.23490.23760.26250.1463Qij=0.22960.21270.24250.23630.25340.25840.26840.25270.33260.26660.25580.2349Qij的反

34、转矩阵Aij =0.2296 0.21270.3326 0.26660.2466 0.22140.3383 0.26960.3287 0.29230.3813 0.29780.1951 0.27360.2033 0.1660Qij矩阵列项求和 Ri =1.0000 1.00001.2555 1.0000Qi=0.22960.8427;0.24660.22140.25190.24170.25880.26110.27080.25490.33830.26960.25870.23760.32870.29230.33250.36340.30820.33150.29880.27620.38130.2978

35、0.28580.26250.19510.27360.17310.15850.17950.14910.16210.21610.20330.1660.15930.14630.24250.25580.25190.25870.33250.28580.17310.15930.23630.23490.24170.23760.36340.26250.15850.14630.25340.25880.30820.17950.25840.26110.33150.14910.26840.27080.29880.16210.25270.25490.27620.21611.00000.95960.99990.88130

36、.99991.00011.00010.99990.24660.32870.1951;Ii=0.99171.06511.4195P1=(Qi./1).*IiQi=0.21270.22140.29230.2736;Ii=0.99331.03391.36521.02881.2778;P2= (Qi./1).*IiQi=0.2425 0.25191.3578 0.7067; P3=(Qi./1).*Ii0.33250.1731;Ii= 0.9903Qi=0.23630.24170.36340.30820.1585;Ii= 1.00020.1795;Ii=0.99751.02311.01871.5380

37、1.21310.6708;P4=(Qi./0.9999).*IiQi=0.25340.2588170.7067;P5=(Qi./0.9999).*IiQi=0.2584 0.26110.5780;P6=(Qi./1.0001).*IiQi= 0.2684 0.27080.6033;P7=(Qi./1.0001).*IiQi=0.2527 0.25490.8545;P8=(Qi./0.9999).*Ii0.33150.29880.27620.1491;Ii=1.00180.1621;Ii=0.99880.2161;Ii=0.99921.01211.00771.00791.28501.11201.

38、0918Qi=0.33260.33831.01480.26961.01310.25870.38131.14400.29781.11920.2033;Ii=0.9978Qi=0.26660.6099;P9=(Qi./ 1.2555 ).*Ii0.166;Ii= 1.0017Qi= 0.25580.6238;P10=(Qi./1).*Ii0.1593;Ii= 1.00140.28581.02341.66101.2566;P11=(Qi./ 0.9596 ).*IiQi=0.2349 0.23760.63530.26250.1463;Ii=0.99901.02340.5801;P12=(Qi./ 0

39、.8813 ).*IiPij =0.22770.21130.26270.22890.25920.24730.26370.26420.27290.25690.27340.27310.27590.27590.46660.39900.45150.55900.37390.42590.33220.30160.34740.33330.37430.49470.16440.34960.12230.10630.12690.08620.09780.18470.09880.10360.10550.09630.24010.23640.25280.25880.26810.25250.26430.26710.26690.

40、2663Pij反转矩阵0.22770.21130.24010.23640.26630.24730.27590.55900.49470.25280.26370.37390.12690.25880.26420.42590.08620.26810.25250.26430.26270.27340.46660.34740.16440.26710.22890.27310.39900.33330.34960.26690.25920.27590.45150.37430.12230.27290.33220.09780.25690.30160.1063180.1847权重气象评估Ki =1.1214 1.1888

41、0.9839 0.9771综合气象评估指数Ii(Pij反转矩阵列项求和) =1.0798 1.1676 1.0209 1.05800.9416 0.9395 0.9792 1.06590.09880.10360.10550.09631.07311.02261.14901.13321.01731.03510.96920.97100.93050.99570.98400.98830.90-1优0.70-0.良070差良气象资料分级检验1第二年二月份Ci=1018.2,272.6,0.58,1.44;Di=1027.8,277.5,0.89,2.5;Si=1022,273.7,0.44,2.8;Ii=f4(Ci,Di,Si)Ii =1.00101.00491.63290.6776I=1.0791-综合气象评估 优Ii=1.0010Qi =1.00490.23280.23281.63290.37830.37830.6776;Qi=Ii./4.31640.15700.2319Qi求和为1Pi=0.23190.6776;Ni=Pi.*Ii0.1570;Ii=1.00101.00491.6329Ni =0.23210.23390.61770.1064K=1.1901权

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论