山西省长治市黄家川中学高三数学文下学期期末试卷含解析_第1页
山西省长治市黄家川中学高三数学文下学期期末试卷含解析_第2页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、山西省长治市黄家川中学高三数学文下学期期末试卷含解析一、 选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1. 一个样本容量为8的样本数据,它们按一定顺序排列可以构成一个公差不为0的等差数列an,若a3=5,且a1,a2,a5成等比数列,则此样本数据的中位数是()A6B7C8D9参考答案:C【考点】众数、中位数、平均数【分析】设公差为d,则(5d)2=(52d)(5+2d),由公差d不为0,解得d=2,a1=52d=1,由此能求出此样本数据的中位数【解答】解:一个样本容量为8的样本数据,它们按一定顺序排列可以构成一个公差不为0的等差数列an,a

2、3=5,且a1,a2,a5成等比数列,设公差为d,则,即(5d)2=(52d)(5+2d),又公差d不为0,解得d=2,a1=52d=1,此样本数据的中位数是: =8故答案为:82. 在我国古代数学名著九章算术中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑ABCD中,AB平面BCD,且AB=BC=CD,则异面直线AC与BD所成角的余弦值为()ABCD参考答案:A【考点】LM:异面直线及其所成的角【分析】如图所示,分别取AB,AD,BC,BD的中点E,F,G,O,则EFBD,EGAC,FOOG,FEG为异面直线AC与BD所成角【解答】解:如图所示,分别取AB,AD,BC,BD的中点E,

3、F,G,O,则EFBD,EGAC,FOOG,FEG为异面直线AC与BD所成角设AB=2a,则EG=EF=a,FG=a,FEG=60,异面直线AC与BD所成角的余弦值为,故选:A3. 已知loga2,logb2R,则“2a2b2”是“loga2logb2”的()A充分不必要条件B必要不充分条件C充要条件 D既不充分也不必要条件参考答案:A【考点】必要条件、充分条件与充要条件的判断【分析】分别由2a2b2,得到ab1,由loga2logb2,得到ab,结合集合的包含关系判断即可【解答】解:由2a2b2,得:ab1,得:loga2logb2,是充分条件,由loga2logb2得:,即,故ab,故”2

4、a2b2”是“loga2logb2”的充分不必要条件,故选:A【点评】本题考查了充分必要条件,考查集合的包含关系以及指数函数、对数函数的性质,是一道基础题4. 设,则( )A abc Bacb C bac Dbca 参考答案:C5. 若函数,则= 。参考答案:3因为,所以。6. (5分)直线y=kx与椭圆C:+=1(ab0)交于A、B两点,F为椭圆C的左焦点,且?=0,若ABF(0,则椭圆C的离心率的取值范围是() A (0, B (0, C , D ,1)参考答案:D【考点】: 椭圆的简单性质;平面向量数量积的运算【专题】: 圆锥曲线的定义、性质与方程【分析】: 设F2是椭圆的右焦点由?=0

5、,可得BFAF,再由O点为AB的中点,OF=OF2可得四边形AFBF2是矩形设ABF=,可得BF=2ccos,BF2=AF=2csin,利用椭圆的定义可得BF+BF2=2a,可得e=,即可得出解:设F2是椭圆的右焦点?=0,BFAF,O点为AB的中点,OF=OF2四边形AFBF2是平行四边形,四边形AFBF2是矩形如图所示,设ABF=,BF=2ccos,BF2=AF=2csin,BF+BF2=2a,2ccos+2csin=2a,e=,sin+cos=,(0,e故选:D【点评】: 本题考查了椭圆的定义及其标准方程性质、矩形的定义、三角函数的单调性、两角和差的正弦,考查了推理能力与计算能力,属于中

6、档题7. 设全集U=xNx8,集合A=1,3,7,B=2,3,8,则( ) A1,2,7,8 B4,5,6 C0,4,5,6 D0,3,4,5,6参考答案:C8. 如果实数满足条件,那么目标函数的最大值为 AB C D 参考答案:B做出满足条件的可行域如图,平移直线,由图可知,当直线经过点D(0,-1)时,直线的的截距最小,此时最大,所以最大值为1,选B.9. 一个几何体的三视图如图所示,该几何体的体积为()ABCD参考答案:A【考点】由三视图求面积、体积【分析】根据三视图知该几何体是四棱锥,且是棱长为2的正方体一部分,画出直观图,由正方体的性质、分割法、柱体和椎体的体积公式求出该几何体的体积

7、【解答】解:根据几何体的三视图得:该几何体是四棱锥MPSQN,且四棱锥是棱长为2的正方体的一部分,直观图如图所示:由正方体的性质得,所以该四棱锥的体积为:V=V三棱柱V三棱锥=222222=,故选A10. (2009江西卷理)数列的通项,其前项和为,则为A B C D参考答案:A解析:由于以3 为周期,故故选A二、 填空题:本大题共7小题,每小题4分,共28分11. 函数在上的单调递减区间为 。参考答案:12. 在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系.已知圆的极坐标方程为,则该圆的圆心到直线(为参数)的距离是_.参考答案:13. 定义平面点集R2=x,y)|xR,yR丨,对

8、于集合,若对,使得PR2|丨PP0|r,则称集合从为“开集”.给出下列命题:集合x,y)| (x1)2 + (y3)20是开集;开集在全集R2上的补集仍然是开集;两个开集的并集是开集.其中你认为正确的所有命题的序号是_.参考答案:略14. 双曲线的焦点坐标为 参考答案:15. 在ABC中,A、B、C的对边分别为a、b、c,若a=3,B=2A,cosA=,则sinA=,b=参考答案:,2考点:正弦定理;二倍角的余弦专题:计算题;转化思想;分析法;三角函数的求值;解三角形分析:利用同角三角函数基本关系式可求sinA,由二倍角公式可求sinB,利用正弦定理即可求b的值解答:解:cosA=,A为三角形

9、内角,sinA=,a=3,B=2A,sinB=2sinAcosA=2=由正弦定理可得: =,可得:b=2故答案为:,2点评:本题主要考查了同角三角函数基本关系式,二倍角公式,正弦定理在解三角形中的应用,考查了计算能力,属于基础题16. (选修41 几何证明选讲)如图,两个等圆与外切,过作的两条切线是切点,点在圆上且不与点重合,则= . 参考答案:略17. 如果的展开式中含有非零常数项,则正整数的最小值为_.参考答案:答案:7三、 解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18. 在直角坐标系xOy中,曲线(t为参数,且),其中,在以O为极点,x轴正半轴为极轴的极坐

10、标系中,曲线()求C2与C3交点的直角坐标;()若C1与C2相交于点A, C1与C3相交于点B,求最大值.参考答案:();()4.()曲线的直角坐标方程为,曲线的直角坐标方程为联立解得或所以与交点的直角坐标为和()曲线的极坐标方程为,其中因此得到极坐标为,的极坐标为所以,当时,取得最大值,最大值为考点:1、极坐标方程和直角坐标方程的转化;2、三角函数的最大值19. 已知椭圆:的离心率为,且椭圆过点,直线过椭圆的右焦点且与椭圆交于两点.(1)求椭圆的标准方程;(2)已知点,求证:若圆与直线相切,则圆与直线也相切.参考答案:(1)解:设椭圆C的焦距为2c(c0),依题意,解得,c=1,故椭圆C的标

11、准方程为;(2)证明:当直线l的斜率不存在时,直线l的方程为,M,N两点关于x轴对称,点P(4,0)在x轴上,所以直线PM与直线PN关于x轴对称,所以点O到直线PM与直线PN的距离相等,故若圆与直线PM相切,则也会与直线PN相切;当直线l的斜率存在时,设直线l的方程为,由得:所以, ,所以,于是点O到直线PM与直线的距离PN相等,故若圆与直线PM相切,则也会与直线PN相切;综上所述,若圆与直线PM相切,则圆与直线PN也相切.20. 某地举行公车拍卖会,轿车拍卖成交了4辆,成交价分别为5元,x万元,7万元,9万元;货车拍卖成交了2辆,成交价分别为7万元,8万元总平均成交价格为7万元(1)求该场拍

12、卖会成交价格的中位数;(2)某人拍得两辆车,求拍得轿车、货车各一辆且总成交价格不超过14万元的概率参考答案:【考点】列举法计算基本事件数及事件发生的概率;众数、中位数、平均数【分析】(1)求出x的值,求出这6个数的中位数即可;(2)设轿车编号a,b,c,d,货车编号1,2,共15种基本事件,求出不超过14万元的有5个基本事件,求出满足条件的概率即可【解答】解:(1)因为(5+x+7+9+7+8)=7,所以x=6,则中位数为(7+7)=7,(2)设轿车编号a,b,c,d,货车编号1,2共有(a,b)(a,c)(a,d)(a,1)(a,2)(b,c)(b,d)(b,1)(b,2)(c,d)(c,1)(c,2)(c,d)(c,1)(c,2)共15种基

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论