版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、九年级下册知识点第二十六章 二次函数 (证明)1、定义:一般地,如果是常数,那么叫做的二次函数。自变量的取值范围是全体实数。2、二次函数的性质:(1)抛物线的顶点是坐标原点,对称轴是轴;(2)函数的图像与的符号关系: 当时抛物线开口向上顶点为其最低点;当时抛物线开口向下顶点为其最高点。顶点是坐标原点,对称轴是轴的抛物线的解析式形式为。3、二次函数 的图像是对称轴平行于(包括重合)轴的抛物线。4、二次函数用配方法可化成:的形式,其中。5、二次函数由特殊到一般,可分为以下几种形式:;。6、抛物线的三要素:开口方向、对称轴、顶点。 的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛
2、物线的开口大小、形状相同。 平行于轴(或重合)的直线记作.特别地,轴记作直线。(P23-9,10)7、顶点决定抛物线的位置。几个不同的二次函数,如果二次项系数相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同。8、求抛物线的顶点、对称轴的方法 (1)公式法:,顶点是,对称轴是直线。 (2)配方法:运用配方的方法,将抛物线的解析式化为的形式,得到顶点为(,),对称轴是直线。 (3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点。 9、抛物线中,的作用 (1)决定开口方向及开口大小,这与中的完全一样。
3、 (2)和共同决定抛物线对称轴的位置。由于抛物线的对称轴是直线。,故:时,对称轴为轴;(即、同号)时,对称轴在轴左侧;(即、异号)时,对称轴在轴右侧。 (3)的大小决定抛物线与轴交点的位置。 当时,抛物线与轴有且只有一个交点(0,): ,抛物线经过原点; ,与轴交于正半轴;,与轴交于负半轴。 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则 。10、几种特殊的二次函数的图像特征如下:函数解析式开口方向对称轴顶点坐标当时开口向上当时开口向下(轴)(0,0)(轴)(0, )(,0)(,)()用待定系数法求二次函数的解析式 (1)一般式:。已知图像上三点或三对、的值,通常选择一般
4、式。 (2)顶点式:.已知图像的顶点或对称轴,通常选择顶点式。 (3)交点式:已知图像与轴的交点坐标、,通常选用交点式:。12、直线与抛物线的交点 (1)轴与抛物线得交点为(0, )。 (2)与轴平行的直线与抛物线有且只有一个交点(,)。 (3)抛物线与轴的交点。二次函数的图像与轴的两个交点的横坐标、,是对应一元二次方程的两个实数根。抛物线与轴的交点情况可以由对应的一元二次方程的根的判别式判定: 有两个交点抛物线与轴相交; 有一个交点(顶点在轴上)抛物线与轴相切; 没有交点抛物线与轴相离。 (4)平行于轴的直线与抛物线的交点:同(3)一样可能有0个交点、1个交点、2个交点。当有2个交点时,两交
5、点的纵坐标相等,设纵坐标为,则横坐标是的两个实数根。 (5)一次函数的图像与二次函数的图像的交点,由方程组 的解的数目来确定:方程组有两组不同的解时与有两个交点;方程组只有一组解时与只有一个交点;方程组无解时与没有交点。 (6)抛物线与轴两交点之间的距离:若抛物线与轴两交点为,由于、是方程的两个根,故: HYPERLINK /czsx/jszx/jnjxc/dzkbj/200905/t20090525_568185.htm t _blank 第二十七章相似 (证明) HYPERLINK /czsx/jszx/jnjxc/dzkbj/200905/t20090525_568184.htm t _
6、blank 图形的相似 概述如果两个图形形状相同,但大小不一定相等,那么这两个图形相似。(相似的符号:) 判定如果两个多边形满足对应角相等,对应边的比相等,那么这两个多边形相似。 相似比相似多边形的对应边的比叫相似比。相似比为1时,相似的两个图形 HYPERLINK /view/189041.htm t _blank 全等。 性质相似多边形的对应角相等,对应边的比相等。相似多边形的周长比等于相似比。 相似多边形的面积比等于相似比的平方。 HYPERLINK /czsx/jszx/jnjxc/dzkbj/200905/t20090525_568178.htm t _blank 相似三角形 判定1
7、.两个三角形的两个角对应相等 2.两边对应成比例,且夹角相等 3.三边对应成比例 4.平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似。 性质1. HYPERLINK /view/4433.htm t _blank 相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。 2.相似三角形周长的比等于相似比。 3.相似三角形面积的比等于相似比的平方 HYPERLINK /czsx/jszx/jnjxc/dzkbj/200905/t20090525_568159.htm t _blank 位似 如果两个图形不仅是 HYPER
8、LINK /view/313831.htm t _blank 相似图形,而且每组对应点的连线交于一点,对应边互相平行,那么这两个图形叫做 HYPERLINK /view/777408.htm t _blank 位似图形,这个点叫做位似中心,这时的相似比又称为位似比。性质位似图形的对应点和位似中心在同一直线上,它们到位似中心的距离之比等于相似比。 位似多边形的对应边平行或共线。位似可以将一个图形放大或缩小。位似图形的中心可以在任意的一点,不过位似图形也会随着位似中心的位变而位变。 根据一个位似中心可以作两个关于已知图形一定位似比的位似图形,这两个图形分布在位似中心的两侧,并且关于位似中心对称。
9、注意 1、位似是一种具有位置关系的相似,所以两个图形是位似图形,必定是相似图形,而相似图形不一定是位似图形; 2、两个位似图形的位似中心只有一个; 3、两个位似图形可能位于位似中心的两侧,也可能位于位似中心的一侧; 4、位似比就是相似比利用位似图形的定义可判断两个图形是否位似; 5、平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形位似。第二十八章 直角三角形边的关系 (选择,填空,计算,证明)1、正切:定义:在RtABC中,锐角A的对边与邻边的比叫做A的正切,记作tanA,即tanA=A的对边/A的邻边。tanA是一个完整的符号,它表示A的正切,记号里习惯省去角的符号“”;tan
10、A没有单位,它表示一个比值,即直角三角形中A的对边与邻边的比;tanA不表示“tan”乘以“A”;tanA的值越大,梯子越陡,A越大;A越大,梯子越陡,tanA的值越大。2、正弦:定义:在RtABC中,锐角A的对边与斜边的比叫做A的正弦,记作sinA,即sinA=A的对边/斜边;3、余弦:定义:在RtABC中,锐角A的邻边与斜边的比叫做A的余弦,记作cosA,即cosA=A的邻边/斜边;4、余切:定义:在RtABC中,锐角A的邻边与对边的比叫做A的余切,记作cotA,即cotA=A的邻边/A的对边;5、一个锐角的正弦、余弦、正切、余切分别等于它的余角的余弦、正弦、余切、正切。(通常我们称正弦、
11、余弦互为余函数。同样,也称正切、余切互为余函数,可以概括为:一个锐角的三角函数等于它的余角的余函数)用等式表达:若A 为锐角,则sinA = cos(90A)等等。6、记住特殊角的三角函数值表0,30,45,60,90。7、当角度在090间变化时,正弦值、正切值随着角度的增大(或减小)而增大(或减小);余弦值、余切值随着角度的增大(或减小)而减小(或增大)。0sin1,0cos1。同角的三角函数间的关系:tncot=1,tan=sin/cos,cot=cos/sin,sin2+cos2=18、在ABC中,C为直角,A、B、C所对的边分别为a、b、c,则有:(1)三边之间的关系:a2+b2=c2
12、;(2)两锐角的关系:AB=90;(3)边与角之间的关系:sin等; (4)面积公式;(5)直角三角形ABC内接圆O的半径为(a+b-c)/2;(6)直角三角形ABC外接圆O的半径为c/2。第二十九章投影与视图 (选择)291投影 一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的 HYPERLINK /view/7277.htm t _blank 影子叫做物体的投影(projection),照射光线叫做投影线,投影所在的平面叫做 HYPERLINK /view/2283979.htm t _blank 投影面。 有时光线是一组互相平行的射线,例如太阳光或探照灯光的一束光中的光线。由平
13、行光线形成的投影是 HYPERLINK /view/2241095.htm t _blank 平行投影(parallel projection).由同一点(点光源发出的光线)形成的投影叫做 HYPERLINK /view/1361470.htm t _blank 中心投影(center projection)。投影线垂直于投影面产生的投影叫做 HYPERLINK /view/1694206.htm t _blank 正投影。投影线平行于投影面产生的投影叫做平行投影。物体正投影的形状、大小与它相对于投影面的位置有关。292三视图 三视图是观测者从三个不同位置观察同一个空间几何体而画出的图形。 将
14、人的视线规定为平行投影线,然后正对着物体看过去,将所见物体的轮廓用正投影法绘制出来该图形称为视图。一个物体有六个视图:从物体的前面向后面投射所得的视图称主视图能反映物体的前面形状,从物体的上面向下面投射所得的视图称俯视图能反映物体的上面形状,从物体的左面向右面投射所得的视图称左视图能反映物体的左面形状, 还有其它三个 HYPERLINK /view/71981.htm t _blank 视图不是很常用。三视图就是 HYPERLINK /view/2055611.htm t _blank 主视图、 HYPERLINK /view/1228712.htm t _blank 俯视图、 HYPERLI
15、NK /view/2785210.htm t _blank 左视图的总称。特点:一个视图只能反映物体的一个方位的形状,不能完整反映物体的结构形状。三视图是从三个不同方向对同一个物体进行投射的结果,另外还有如剖面图、半剖面图等做为辅助,基本能完整的表达物体的结构。主视、俯视 长对正 主视、左视 高平齐 左视、俯视 宽相等 在许多情况下,只用一个投影不加任何注解,是不能完整清晰地表达和确定形体的形状和结构的。如图所示,三个形体在同一个方向的 HYPERLINK /view/550991.htm t _blank 投影完全相同,但三个形体的空间结构却不相同。可见只用一个方向的投影来表达形体形状是不行的。一般必须将形体向几个方向投影,才能完整清晰地表达出形体的形状和结构。 一个视图只能反映物体的一个方位的形状,不能完整反映物体的结构形状。三视图是从三个不同方向对同一个物体进行投射的结果,另外还有如剖面图、半剖面图等做为辅助,基本能完整
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 集装箱交易合同案例
- 法定节假日有哪些
- 六年级道德与法治上册 第三单元 我们的国家机构 5《国家机构有哪些》教案2 新人教版
- 高中化学《离子反应》教学设计
- 2024年春八年级物理下册 第九章 第1节 压强教案 (新版)新人教版
- 2024-2025学年高中生物 第二章 细胞的化学组成 2.2 细胞中的脂质教案 苏教版必修1
- 安徽省长丰县八年级生物上册 6.1.1 尝试对生物进行分类教案 (新版)新人教版
- 2024-2025学年高中化学 第4章 第3节 蛋白质和核酸教案 新人教版选修5
- 汽车试验技术 课件 项目1 汽车试验概述
- 综合能源托管合同(2篇)
- 2024新人教版初中英语单词表汇总(七-九年级)中考复习必背
- 邮政快递员劳务合同范本
- 生涯发展报告机电一体化
- 光伏安装培训课件模板
- 建筑工程质量通病防治手册样本
- 2024软件代码自主率测评方法
- 2024年贵州遵义市播州区城市社区工作者招聘笔试参考题库附带答案详解
- 钟南山院士 (模板)
- 广告投放运营述职报告
- 小学一年级简单的语文阅读理解(八篇)
- 2024年贵州省职业院校技能大赛中职组《导游服务》赛项备考试题库(含答案)
评论
0/150
提交评论