版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1一元二次方程x2x2=0的解是( )Ax1=1,x2=2Bx1=1,x2=2Cx1=1,x2=2Dx1=1,x2=22如图,在RtABC中,ACB=90,如果AC=
2、3,AB=5,那么sinB等于()ABCD3下列四个点,在反比例函数y=图象上的是( )A(1,-6)B(2,4)C(3,-2)D(-6,-1)4二次函数y=(x1)2+2,它的图象顶点坐标是()A(2,1)B(2,1)C(2,1)D(1,2)5如图,在ABC中,EFBC,S四边形BCFE=8,则SABC=( )A9B10C12D136如图,E为平行四边形ABCD的边AB延长线上的一点,且BE:AB=2:3,BEF的面积为4,则平行四边形ABCD的面积为()A30B27C14D327如图是二次函数的图象,有下面四个结论:;,其中正确的结论是 ABCD8已知P是ABC的重心,且PEBC交AB于点
3、E,BC,则PE的长为( ).ABCD9将抛物线通过一次平移可得到抛物线对这一平移过程描述正确的是( )A沿x轴向右平移3个单位长度B沿x轴向左平移3个单位长度C沿y轴向上平移3个单位长度D沿y轴向下平移3个单位长度10一组数据3,7,9,3,4的众数与中位数分别是()A3,9B3,3C3,4D4,7二、填空题(每小题3分,共24分)11如图,已知,则_.12若为一元二次方程的一个根,则_13抛物线的顶点坐标是_14如图是拦水坝的横断面,斜坡的高度为米,斜面的坡比为,则斜坡的长为_米(保留根号)15如图,是的直径,弦,的平分线交于点,连接,则阴影部分的面积是_(结果保留)16如图,在边长为的正
4、方形中,点为靠近点的四等分点,点为中点,将沿翻折得到连接则点到所在直线距离为_.17如图所示,某建筑物有一抛物线形的大门,小明想知道这道门的高度,他先测出门的宽度,然后用一根长为的小竹竿竖直的接触地面和门的内壁,并测得,则门高为_18在ABC中,C=90,AC=,CAB的平分线交BC于D,且,那么tanBAC=_三、解答题(共66分)19(10分)在一空旷场地上设计一落地为矩形的小屋,拴住小狗的长的绳子一端固定在点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为.(1)如图1,若,则_.(2)如图2,现考虑在(1)中的矩形小屋的右侧以为边拓展一正区域,使之变成落地为五边形的小屋,其
5、他条件不变,则在的变化过程中,当取得最小值时,求边的长及的最小值.20(6分)在ABC中, AB=12,AC=9,点D、E分别在边AB、AC上,且ADE与ABC与相似,如果AE=6,那么线段AD的长是_21(6分)如图所示,双曲线与直线(为常数)交于,两点.(1)求双曲线的表达式;(2)根据图象观察,当时,求的取值范围;(3)求的面积.22(8分)解方程(1)7x249x0; (2)x22x10.23(8分)如图,点A、B、C、D、E都在O上,AC平分BAD,且ABCE,求证:24(8分)解方程:+3x4=025(10分)如图,BAC的平分线交ABC的外接圆于点D,ABC的平分线交AD于点E(
6、1)求证:DEDB;(2)若BAC90,BD4,求ABC外接圆的半径26(10分)如图,RtABC中,BAC90,AB2,AC4,D是BC边上一点,且BDCD,G是BC边上的一动点,GEAD分别交直线AC,AB于F,E两点(1)AD ;(2)如图1,当GF1时,求的值;(3)如图2,随点G位置的改变,FG+EG是否为一个定值?如果是,求出这个定值,如果不是,请说明理由参考答案一、选择题(每小题3分,共30分)1、D【解析】试题分析:利用因式分解法解方程即可解:(x2)(x+1)=0,x2=0或x+1=0,所以x1=2,x2=1故选D考点:解一元二次方程-因式分解法2、A【解析】直接利用锐角三角
7、函数关系得出sinB的值【详解】在RtABC中,ACB=90,AC=3,AB=5,sinB= 故选A【点睛】此题主要考查了锐角三角函数关系,正确把握定义是解题关键3、D【解析】由可得xy=6,故选D4、D【解析】二次函数的顶点式是,,其中 是这个二次函数的顶点坐标,根据顶点式可直接写出顶点坐标.【详解】解: 故选:D.【点睛】根据抛物线的顶点式,可确定抛物线的开口方向,顶点坐标(对称轴),最大(最小)值,增减性等5、A【分析】由在ABC中,EFBC,即可判定AEFABC,然后由相似三角形面积比等于相似比的平方,即可求得答案【详解】,又EFBC,AEFABC1SAEF=SABC又S四边形BCFE
8、=8,1(SABC8)=SABC,解得:SABC=1故选A6、A【解析】四边形ABCD是平行四边形,AB/CD,AB=CD,AD/BC,BEFCDF,BEFAED, ,BE:AB=2:3,AE=AB+BE,BE:CD=2:3,BE:AE=2:5, ,SBEF=4,SCDF=9,SAED=25,S四边形ABFD=SAED-SBEF=25-4=21,S平行四边形ABCD=SCDF+S四边形ABFD=9+21=30,故选A.【点睛】本题考查了平行四边形的性质,相似三角形的判定与性质等,熟记相似三角形的面积等于相似比的平方是解题的关键.7、D【分析】根据抛物线开口方向得到,根据对称轴得到,根据抛物线与
9、轴的交点在轴下方得到,所以;时,由图像可知此时,所以;由对称轴,可得;当时,由图像可知此时,即,将代入可得.【详解】根据抛物线开口方向得到,根据对称轴得到,根据抛物线与轴的交点在轴下方得到,所以,故正确.时,由图像可知此时,即,故正确.由对称轴,可得,所以错误,故错误;当时,由图像可知此时,即,将中变形为,代入可得,故正确.故答案选D.【点睛】本题考查了二次函数的图像与系数的关系,注意用数形结合的思想解决问题8、A【分析】如图,连接AP,延长AP交BC于D,根据重心的性质可得点D为BC中点,AP=2PD,由PE/BC可得AEPABD,根据相似三角形的性质即可求出PE的长.【详解】如图,连接AP
10、,延长AP交BC于D,点P为ABC的重心,BC=,BD=BC=,AP=2PD,PE/BC,AEPABD,PE=.故选:A.【点睛】本题考查三角形重心的性质及相似三角形的判定与性质,三角形的重心是三角形三条中线的交点,重心到顶点的距离与重心到对边中点的距离之比为2:1;正确作出辅助线,构造相似三角形是解题关键9、A【分析】分别确定出两个抛物线的顶点坐标,再根据左减右加,确定平移方向即可得解【详解】解:抛物线的顶点坐标为(0,2),抛物线的顶点坐标为(3,-2),所以,向右平移3个单位,可以由抛物线平移得到抛物线故选:A【点睛】本题考查了二次函数图象与几何变换,利用点的平移规律左减右加,上加下减解
11、答是解题的关键10、C【分析】由题意直接根据众数和中位数的定义进行分析求解判断即可【详解】解:将数据重新排列为3,3,4,7,9,众数为3,中位数为4.故选:C【点睛】本题主要考查众数、中位数,熟练掌握众数、中位数的定义是解题的关键二、填空题(每小题3分,共24分)11、105【解析】如图,根据邻补角的定义求出3的度数,继而根据平行线的性质即可求得答案.【详解】1+3=180,1=75,3=105,a/b,2=3=105,故答案为:105.【点睛】本题考查了邻补角的定义,平行线的性质,熟练掌握两直线平行,内错角相等是解本题的关键.12、-2【分析】把x=1代入已知方程可得关于m的方程,解方程即
12、可求得答案.【详解】解:为一元二次方程的一个根,解得:m=2.故答案为:2.【点睛】本题考查了一元二次方程的解的定义,属于应知应会题型,熟练掌握一元二次方程的解的概念是解题关键.13、(1,4)【解析】解:原抛物线可化为:y=(x1)24,其顶点坐标为(1,4)故答案为(1,4)14、【分析】由题意可知斜面坡度为1:2,BC=6m,由此求得AC=12m,再由勾股定理求得AB的长即可.【详解】由题意可知:斜面坡度为1:2,BC=6m,AC=12m,由勾股定理可得,AB= m故答案为6m【点睛】本题考查了解直角三角形的应用,根据坡度构造直角三角形是解决问题的关键15、【分析】连接OD,求得AB的长
13、度,可以推知OA和OD的长度,然后由角平分线的性质求得AOD=90;最后由扇形的面积公式、三角形的面积公式可以求得,阴影部分的面积=.【详解】解:连接,为的直径,平分,阴影部分的面积故答案为:【点睛】本题综合考查了圆周角定理、含30度角的直角三角形以及扇形面积公式16、【分析】延长交BC于点M,连接FM,延长交DA的延长线于点P,作DNCP,先证明,利用相似的性质求出,然后证明,利用相似的性质求出EP,从而得到DP的长,再利用勾股定理求出CP的长,最后利用等面积法计算DN即可【详解】如图,延长交BC于点M,连接FM,延长交DA的延长线于点P,作DNCP,由题可得,F为AB中点,又FM=FM,(
14、HL),由折叠可知,又,AD=4,E为四等分点,,,即,EP=6,DP=EP+DE=7,在中,故答案为:【点睛】本题考查了折叠的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理以及等面积法等知识,较为综合,难度较大,重点在于作辅助线构造全等或相似三角形17、【分析】根据题意分别求出A,B,D三点的坐标,利用待定系数法求出抛物线的表达式,从而找到顶点,即可找到OE的高度【详解】根据题意有 设抛物线的表达式为 将A,B,D代入得 解得 当时, 故答案为:【点睛】本题主要考查二次函数的最大值,掌握待定系数法是解题的关键18、【分析】根据勾股定理求出DC,推出DAC=30,求出BAC的度
15、数,即可得出tanBAC的值【详解】在DAC中,C=90,由勾股定理得:DC,DCAD,DAC=30,BAC=230=60,tanBAC=tan60故答案为:【点睛】本题考查了含30度角的直角三角形,锐角三角函数的定义,能求出DAC的度数是解答本题的关键三、解答题(共66分)19、(1)88;(2)BC长为;S的最小值为【分析】(1)小狗活动的区域面积为以B为圆心、10为半径的圆,以C为圆心、6为半径的圆和以A为圆心、4为半径的圆的面积和,据此列式求解可得;(2)此时小狗活动的区域面积为以B为圆心、10为半径的圆,以A为圆心、x为半径的圆、以C为圆心、10-x为半径的圆的面积和,列出函数解析式
16、,由二次函数的性质解答即可【详解】解:(1)如图1,拴住小狗的10m长的绳子一端固定在B点处,小狗可以活动的区域如图所示:由图可知,小狗活动的区域面积为以B为圆心、10为半径的圆,以C为圆心、6为半径的圆和以A为圆心、4为半径的圆的面积和,S=102+62+42=88,故答案为:88;(2)如图2,设BC=x,则AB=10-x,S=102+x2+(10-x)2=(x2-5x+250)=(x-)2+,当x=时,S取得最小值,BC长为;S的最小值为【点睛】本题主要考查二次函数的应用,解题的关键是根据绳子的长度结合图形得出其活动区域及利用扇形的面积公式表示出活动区域面积20、8或;【分析】分类讨论:
17、当,根据相似的性质得;当,根据相似的性质得,然后分别利用比例性质求解即可【详解】解:,当,则,即,解得;当,则,即,解得,综上所述,的长为8或故答案为:8或【点睛】本题考查了相似三角形的性质:相似三角形的对应角相等,对应边的比相等解决本题时分类讨论边与边的对应关系是解题的关键.21、 (1);(2)或;(3)6.【分析】(1)把点A坐标代入反比例函数解析式即可求得k的值;(2)根据点B在双曲线上可求出a的值,再结合图象确定双曲线在直线上方的部分对应的x的值即可;(3)先利用待定系数法求出一次函数的解析式,再用如图的AOC的面积减去BOC的面积即可求出结果.【详解】解(1):双曲线经过,双曲线的
18、解析式为.(2)双曲线经过点,解得,根据图象观察,当时,的取值范围是或.(3)设直线的解析式为,解得,直线的解析式为,直线与轴的交点,.【点睛】本题是反比例函数与一次函数的综合题,重点考查了待定系数法求函数的解析式、一次函数与反比例函数的交点问题和三角形的面积计算,属于中档题型,熟练掌握一次函数与反比例函数的基本知识是解题的关键.22、(1)x10,x27;(2),【解析】(1)用因式分解法求解即可;(2)用配方法求解即可.【详解】(1)7x249x0,x27x0,.解得x10,x27 (2)移项,得,配方,得,开平方,得.解得,【点睛】本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.23、见解析.【分析】根据角平分线的定义,可得BACDAC,然后根据平行线的性质,可得BACACE,从而求出DACACE,最后根据在同圆或等圆中,相等的圆周角所对的弧也相等即可证出结论.【详解】证明:AC平分BAD,BACDAC,ABCE,BACACE,DACACE,【点睛】此题考查的是角平分线的定义、平行线的性质和圆的基本性质,掌握在同圆或等圆中,相等的圆周角所对的弧也相等是解决此题的关键.24、=4,=1.【分析】首先根据十字相乘法将原方程转化成
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版机械行业科技创新合作合同书3篇
- 二零二五版艺术品字画购销与仓储管理合同2篇
- 二零二五版农业用地土壤环境质量调查委托合同3篇
- 二零二五版LED显示屏安全防护与应急响应合同3篇
- 美容院商铺租赁合同(2025版):美容院美容美体设备租赁及售后服务协议2篇
- 二零二五年绿色建筑空调系统设计与施工合同3篇
- 二零二五版废旧设备买卖及环保处理合同2篇
- 二零二五版房地产投资合作三方买卖合同3篇
- 二零二五版二手车鉴定评估及转让合同3篇
- 2025年度不锈钢太阳能板安装工程合同3篇
- GB/T 12914-2008纸和纸板抗张强度的测定
- GB/T 1185-2006光学零件表面疵病
- ps6000自动化系统用户操作及问题处理培训
- 家庭教养方式问卷(含评分标准)
- 城市轨道交通安全管理课件(完整版)
- 线缆包覆挤塑模设计和原理
- TSG ZF001-2006 安全阀安全技术监察规程
- 部编版二年级语文下册《蜘蛛开店》
- 锅炉升降平台管理
- 200m3╱h净化水处理站设计方案
- 个体化健康教育记录表格模板1
评论
0/150
提交评论