版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1如图,四边形ABCD是菱形,对角线AC,BD交于点O,于点H,且DH与AC交于G,则OG长度为ABCD2二次函数与坐标轴的交点个数是()A0个B1个C2个D3个3如图,将ABC绕点C顺时
2、针旋转90得到EDC若点A,D,E在同一条直线上,ACB=20,则ADC的度数是A55B60C65D704如图,AB,AM,BN 分别是O 的切线,切点分别为 P,M,N若 MNAB,A60,AB6,则O 的半径是( )AB3CD5把抛物线y=x2向上平移3个单位,平移后抛物线的表达式是( )Ay=-3By=+3Cy=Dy=6如图,边长为的正六边形内接于,则扇形(图中阴影部分)的面积为()ABCD7 “泱泱华夏,浩浩千秋于以求之?旸谷之东山其何辉,韫卞和之美玉”这是武汉16岁女孩陈天羽用文言文写70周年阅兵的观后感小汀州同学把这篇气势磅礴、文采飞扬的文章放到自己的微博上,并决定用微博转发的方式
3、传播他设计了如下的传播规则:将文章发表在自己的微博上,再邀请n个好友转发,每个好友转发之后,又邀请n个互不相同的好友转发,依此类推已知经过两轮转发后,共有111个人参与了宣传活动,则n的值为()A9B10C11D128如图,正六边形内接于,正六边形的周长是12,则的半径是( )A3B2CD9关于的一元二次方程有实数根,则满足( )AB且C且D10已知一个扇形的弧长为3,所含的圆心角为120,则半径为()A9B3CD11如图,在平面直角坐标系中,的顶点在第一象限,点在轴的正半轴上,将绕点逆时针旋转,点的对应点的坐标是( )ABCD12已知OA=5cm,以O为圆心,r为半径作O若点A在O内,则r的
4、值可以是()A3cmB4cmC5cmD6cm二、填空题(每题4分,共24分)13已知是方程的根,则代数式的值为_.14底角相等的两个等腰三角形_相似.(填“一定”或“不一定”)15如图,点、在射线上,点、在射线上,且,.若和的面积分别为和,则图中三个阴影三角形面积之和为_.16如图,O是ABC的外接圆,D是AC的中点,连结AD,BD,其中BD与AC交于点E写出图中所有与ADE相似的三角形:_17分解因式:x316x_18如图,扇形OAB的圆心角为110,C是上一点,则C_三、解答题(共78分)19(8分)在平面直角坐标系中,己知,点从点开始沿边向点以的速度移动;点从点开始沿边内点以的速度移动如
5、果、同时出发,用表示移动的时间(1)用含的代数式表示:线段_;_;(2)当为何值时,四边形的面积为(3)当与相似时,求出的值20(8分)庄子天下:“一尺之棰,日取其半,万世不竭”意思是说:一尺长的木棍,每天截掉一半,永远也截不完我国智慧的古代人在两千多年前就有了数学极限思想,今天我们运用此数学思想研究下列问题(规律探索)(1)如图1所示的是边长为1的正方形,将它剪掉一半,则S阴影11如图2,在图1的基础上,将阴影部分再裁剪掉半,则S阴影21()2 _;同种操作,如图3,S阴影31()2()3 _;如图4,S阴影41()2()3()4 _;若同种地操作n次,则S阴影n1()2()3()n _于是
6、归纳得到:+()2+()3+()n =_(理论推导)(2)阅读材料:求1+2+22+23+24+22015+22016的值解:设S=1+2+22+23+24+22015+22016,将2得:2S=2+22+23+24+22016+22017,由-得:2SS=220171,即=22017-1即1+2+22+23+24+22015+2201622017-1根据上述材料,试求出+()2+()3+()n 的表达式,写出推导过程(规律应用)(3)比较 _1(填“”、“”或“=”)21(8分)已知关于x的一元二次方程(a+c)x2+2bx+(ac)=0,其中a、b、c分别为ABC三边的长(1)如果x=1是
7、方程的根,试判断ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断ABC的形状,并说明理由;(3)如果ABC是等边三角形,试求这个一元二次方程的根22(10分)如图,在平面内。点为线段上任意一点.对于该平面内任意的点,若满足小于等于则称点为线段的“限距点”.(1)在平面直角坐标系中,若点.在的点中,是线段的“限距点”的是 ;点P是直线上一点,若点P是线段AB的“限距点”,请求出点P横坐标的取值范围.(2)在平面直角坐标系中,若点.若直线上存在线段AB的“限距点”,请直接写出的取值范围23(10分)一汽车租赁公司拥有某种型号的汽车100辆公司在经营中发现每辆车的月租金x(元)与每
8、月租出的车辆数(y)有如下关系:x3000320035004000y100969080(1)观察表格,用所学过的一次函数、反比例函数或二次函数的有关知识求出每月租出的车辆数y(辆)与每辆车的月租金x(元)之间的关系式.(2)已知租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元用含x(x3000)的代数式填表:租出的车辆数 未租出的车辆数 租出每辆车的月收益 所有未租出的车辆每月的维护费 (3)若你是该公司的经理,你会将每辆车的月租金定为多少元,才能使公司获得最大月收益?请求出公司的最大月收益是多少元24(10分)感知定义在一次数学活动课中,老师给出这样一个新定义:如果三角
9、形的两个内角与满足+290,那么我们称这样的三角形为“类直角三角形”尝试运用(1)如图1,在RtABC中,C90,BC3,AB5,BD是ABC的平分线证明ABD是“类直角三角形”;试问在边AC上是否存在点E(异于点D),使得ABE也是“类直角三角形”?若存在,请求出CE的长;若不存在,请说明理由类比拓展(2)如图2,ABD内接于O,直径AB10,弦AD6,点E是弧AD上一动点(包括端点A,D),延长BE至点C,连结AC,且CADAOD,当ABC是“类直角三角形”时,求AC的长25(12分)如图,在ABC中,ABBC,D是AC中点,BE平分ABD交AC于点E,点O 是AB上一点,O过B、E两点,
10、交BD于点G,交AB于点F(1)判断直线AC与O的位置关系,并说明理由;(2)当BD6,AB10时,求O的半径26如图,抛物线yax2+bx4经过A(3,0),B(5,4)两点,与y轴交于点C,连接AB,AC,BC(1)求抛物线的表达式;(2)求ABC的面积;(3)抛物线的对称轴上是否存在点M,使得ABM是直角三角形?若存在,求出点M的坐标;若不存在,请说明理由参考答案一、选择题(每题4分,共48分)1、B【解析】试题解析:在菱形中,所以,在中,因为,所以,则,在中,由勾股定理得,由可得,即,所以故选B.2、B【分析】先计算根的判别式的值,然后根据b24ac决定抛物线与x轴的交点个数进行判断【
11、详解】2241240,二次函数yx22x2与x轴没有交点,与y轴有一个交点二次函数yx22x2与坐标轴的交点个数是1个,故选:B【点睛】本题考查了抛物线与x轴的交点:求二次函数yax2bxc(a,b,c是常数,a0)与x轴的交点坐标,令y0,即ax2bxc0,解关于x的一元二次方程即可求得交点横坐标二次函数yax2bxc(a,b,c是常数,a0)的交点与一元二次方程ax2bxc0根之间的关系:b24ac决定抛物线与x轴的交点个数;b24ac0时,抛物线与x轴有2个交点;b24ac0时,抛物线与x轴有1个交点;b24ac0时,抛物线与x轴没有交点3、C【分析】根据旋转的性质和三角形内角和解答即可
12、【详解】将ABC绕点C顺时针旋转90得到EDCDCE=ACB=20,BCD=ACE=90,AC=CE,ACD=90-20=70,点A,D,E在同一条直线上,ADC+EDC=180,EDC+E+DCE=180,ADC=E+20,ACE=90,AC=CEDAC+E=90,E=DAC=45在ADC中,ADC+DAC+DCA=180,即45+70+ADC=180,解得:ADC=65,故选C【点睛】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答4、D【分析】根据题意可判断四边形ABNM为梯形,再由切线的性质可推出ABN=60,从而判定APOBPO,可得AP=BP=3,在直角APO中,利用三角
13、函数可解出半径的值.【详解】解:连接OP,OM,OA,OB,ONAB,AM,BN 分别和O 相切,AMO=90,APO=90,MNAB,A60,AMN=120,OAB=30,OMN=ONM=30,BNO=90,ABN=60,ABO=30,在APO和BPO中,APOBPO(AAS),AP=AB=3,tanOAP=tan30=,OP=,即半径为.故选D.【点睛】本题考查了切线的性质,切线长定理,解直角三角形,全等三角形的判定和性质,关键是说明点P是AB中点,难度不大.5、B【分析】根据二次函数图像平移规律:上加下减,可得到平移后的函数解析式.【详解】抛物线y=x2向上平移3个单位,平移后的抛物线的
14、解析式为:y=x2+3.故答案为:B.【点睛】本题考查二次函数的平移,熟记平移规律是解题的关键.6、B【分析】根据已知条件可得出,圆的半径为3,再根据扇形的面积公式()求解即可.【详解】解:正六边形内接于,是等边三角形,扇形的面积,故选:【点睛】本题考查的知识点求扇形的面积,熟记面积公式并通过题目找出圆心角的度数与圆的半径是解题的关键7、B【分析】根据传播规则结合经过两轮转发后共有111个人参与了宣传活动,即可得出关于n的一元二次方程,解之取其正值即可得出结论【详解】解:依题意,得:1+n+n2111,解得:n110,n211(不合题意,舍去)故选:B【点睛】本题考查了一元二次方程的应用,找准
15、等量关系,正确列出一元二次方程是解题的关键8、B【分析】根据题意画出图形,求出正六边形的边长,再求出AOB=60即可求出的半径【详解】解:如图,连结OA,OB,ABCDEF为正六边形,AOB=360=60,AOB是等边三角形,正六边形的周长是12,AB=12=2,AO=BO=AB=2,故选B【点睛】本题考查了正多边形和圆,以及正六边形的性质,根据题意画出图形,作出辅助线求出AOB=60是解答此题的关键.9、C【分析】根据一元二次方程有实数根得到且,解不等式求出的取值范围即可【详解】解:关于的一元二次方程有实数根,且,且,且故选:【点睛】本题考查了一元二次方程的根的判别式:当,方程有两个不相等的
16、实数根;当,方程有两个相等的实数根;当,方程没有实数根10、C【分析】根据弧长的公式进行计算即可【详解】解:设半径为r,扇形的弧长为3,所含的圆心角为120,3,r,故选:C【点睛】此题考查的是根据弧长和圆心角求半径,掌握弧长公式是解决此题的关键11、D【分析】过点作x轴的垂线,垂足为M,通过条件求出,MO的长即可得到的坐标.【详解】解:过点作x轴的垂线,垂足为M,在直角中, ,OM=2+1=3,的坐标为.故选:D.【点睛】本题考查坐标与图形变化-旋转,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题12、D【解析】试题分析:根据题意可知,若使点A在O内,则点A到圆心
17、的大小应该小于圆的半径,因此圆的半径应该大于1故选D考点:点与圆的位置关系二、填空题(每题4分,共24分)13、1【分析】把代入已知方程,并求得,然后将其整体代入所求的代数式进行求值即可【详解】解:把代入,得,解得,所以故答案是:1【点睛】本题考查一元二次方程的解以及代数式求值,注意解题时运用整体代入思想14、一定【分析】根据等腰三角形的性质得到B=C,E=F,根据相似三角形的判定定理证明【详解】如图:AB=AC,DE=EF,B=C,E=F,B=E,B=C=E=F,ABCDEF,故答案为一定【点睛】本题考查的是相似三角形的判定、等腰三角形的性质,掌握两组角对应相等的两个三角形相似是解题的关键1
18、5、【分析】由已知可证,从而得到,利用和等高,可求出,同理求出另外两个三角形的面积,则阴影部分的面积可求.【详解】,. 和的面积分别为和 和等高同理可得阴影部分的面积为 故答案为42【点睛】本题主要考查相似三角形的判定及性质,掌握相似三角形的判定方法及所求三角形与已知三角形之间的关系是解题的关键.16、,【分析】根据两角对应相等的两个三角形相似即可判断【详解】解:,ABDDBC,DAEDBC,DAEABD,ADEADB,ADEBDA,DAEEBC,AEDBEC,AEDBEC,故答案为CBE,BDA【点睛】本题考查相似三角形的判定,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型
19、17、x(x+4)(x4).【解析】先提取x,再把x2和16=42分别写成完全平方的形式,再利用平方差公式进行因式分解即可 解:原式=x(x216)=x(x+4)(x4),故答案为x(x+4)(x4)18、1【分析】作所对的圆周角ADB,如图,根据圆周角定理得到ADBAOB55,然后利用圆内接四边形的性质计算C的度数【详解】解:作所对的圆周角ADB,如图,ADBAOB11055,ADB+C180,C180551故答案为1【点睛】本题考查了圆的综合问题,掌握圆周角定理、圆内接四边形的性质是解题的关键三、解答题(共78分)19、(1)2t,(5t);(2)t=2或3;(3)t或1【分析】(1)根据
20、路程=速度时间可求解;(2)根据S四边形PABQ=SABOSPQO列出方程求解;(3)分或两种情形列出方程即可解决问题【详解】(1)OP=2tcm,OQ=(5t)cm故答案为:2t,(5t)(2)S四边形PABQ=SABOSPQO,191052t(5t),解得:t=2或3,当t=2或3时,四边形PABQ的面积为19cm2(3)POQ与AOB相似,POQ=AOB=90,或当,则,t,当时,则,t=1综上所述:当t或1时,POQ与AOB相似【点睛】本题是相似综合题,考查相似三角形的判定和性质、坐标与图形的性质、三角形的面积等知识,解答本题的关键是灵活运用所学知识解决问题,属于中考常考题型20、(1
21、);()n;1 - ()n ;(2)+()2+()3+()n = 1-()n,推导过程见解析;(3)=【分析】(1)根据有理数的混合运算计算前几项结果,并观察得出规律即可得解(2)根据材料中的计算求和的方法即可求解;(3)根据(2)的化简结果,结合极限思想即可比较大小【详解】解:(1)S阴影21()2=1-=,S阴影31()2()3=1-=,S阴影41()2()3()4=,S阴影n1()2()3()n=()n,于是归纳得到:+()2+()3+()n =1 - ()n故答案为:;()n;1 - ()n (2)解:设S = +()2+()3+()n, 将得:S = ()2+()3 +)4 +()n
22、 + ()n+1 ,得:S = - ()n+1 ,将2得:S = 1-()n 即得+()2+()3+()n = 1-()n (3)=,理由如下:=1-()n ,当n越来越大时,()n越来越小,越来越接近零,由极限的思想可知:当n趋于无穷时,()n就等于0,故1-()n就等于1,故答案为:=【点睛】本题考查了数字的变化类、有理数的混合运算,解决的本题的关键是寻找规律并利用规律21、 (1) ABC是等腰三角形;(2)ABC是直角三角形;(3) x1=0,x2=1【解析】试题分析:(1)直接将x=1代入得出关于a,b的等式,进而得出a=b,即可判断ABC的形状;(2)利用根的判别式进而得出关于a,
23、b,c的等式,进而判断ABC的形状;(3)利用ABC是等边三角形,则a=b=c,进而代入方程求出即可试题解析:(1)ABC是等腰三角形;理由:x=1是方程的根,(a+c)(1)22b+(ac)=0,a+c2b+ac=0,ab=0,a=b,ABC是等腰三角形;(2)方程有两个相等的实数根,(2b)24(a+c)(ac)=0,4b24a2+4c2=0,a2=b2+c2,ABC是直角三角形;(3)当ABC是等边三角形,(a+c)x2+2bx+(ac)=0,可整理为:2ax2+2ax=0,x2+x=0,解得:x1=0,x2=1考点:一元二次方程的应用22、(1)E;(2).【分析】(1)分别计算出C、
24、D、E到A、B的距离,根据“限距点”的含义即可判定;画出图形,由“限距点”的定义可知,当点P位于直线上x轴上方并且AP时,点P是线段AB的“限距点”,据此可解;(2)画出图形,可知当时,直线上存在线段AB的“限距点”,据此可解.【详解】(1)计算可知AC=BC= ,DA= ,DB= ,EA=EB=2,设点为线段上任意一点,则, , ,点E为线段AB的“限距点”.故答案是:E.如图,作PFx轴于F, 由“限距点”的定义可知,当点P位于直线上x轴上方并且AP时,点P是线段AB的“限距点”,直线与x轴交于点A(-1,0),交y轴于点H(0,),OAH=30,当AP=2时,AF=,此时点P的横坐标为-
25、1,点P横坐标的取值范围是 ;(2)如图,直线与x轴交于M,AB交x轴于G, 点A(t,1)、B(t,-1),直线与x轴的交点M(-1,0),与y轴的交点C(0,),NMO=30,当圆B与直线相切于点N,连接BN,连接BA并延长与直线交于D(t,)点,NBD=NMO=30,即 ,解得: ;当圆A与直线相切时,同理可知: .【点睛】本题考查了一次函数、圆的性质、两点间的距离公式,是综合性较强的题目,通过做此题培养了学生的阅读能力、数形结合的能力,此题是一道非常好、比较典型的题目23、(1)y与x间的函数关系是(2)填表见解析;(3)当每辆车的月租金为4050元时,公司获得最大月收益307050元
26、【解析】(1)判断出y与x的函数关系为一次函数关系,再根据待定系数法求出函数解析式(2)根据题意可用代数式求出出租车的辆数和未出租车的辆数即可(3)租出的车的利润减去未租出车的维护费,即为公司最大月收益【详解】解:(1)由表格数据可知y与x是一次函数关系,设其解析式为,将(3000,100),(3200,96)代入得,解得:将(3500,90),(4000,80)代入检验,适合y与x间的函数关系是(2)填表如下:租出的车辆数未租出的车辆数租出每辆车的月收益所有未租出的车辆每月的维护费(3)设租赁公司获得的月收益为W元,依题意可得:当x=4050时,Wmax=307050,当每辆车的月租金为40
27、50元时,公司获得最大月收益307050元24、(1)证明见解析;CE;(2)当ABC是“类直角三角形”时,AC的长为或【分析】(1)证明A+2ABD=90即可解决问题如图1中,假设在AC边设上存在点E(异于点D),使得ABE是“类直角三角形”,证明ABCBEC,可得,由此构建方程即可解决问题(2)分两种情形:如图2中,当ABC+2C=90时,作点D关于直线AB的对称点F,连接FA,FB则点F在O上,且DBF=DOA如图3中,由可知,点C,A,F共线,当点E与D共线时,由对称性可知,BA平分FBC,可证C+2ABC=90,利用相似三角形的性质构建方程即可解决问题【详解】(1)证明:如图1中,B
28、D是ABC的角平分线,ABC2ABD,C90,A+ABC90,A+2ABD90,ABD为“类直角三角形”;如图1中,假设在AC边设上存在点E(异于点D),使得ABE是“类直角三角形”,在RtABC中,AB5,BC3,AC,AEBC+EBC90,ABE+2A90,ABE+A+CBE90,ACBE,ABCBEC,CE,(2)AB是直径,ADB90,AD6,AB10,BD,如图2中,当ABC+2C90时,作点D关于直线AB的对称点F,连接FA,FB,则点F在O上,且DBFDOA,DBF+DAF180,且CADAOD,CAD+DAF180,C,A,F共线,C+ABC+ABF90,CABF,FABFBC
29、,即 ,AC如图3中,由可知,点C,A,F共线,当点E与D共线时,由对称性可知,BA平分FBC,C+2ABC90,CADCBF,CC,DACFBC,即,CD(AC+6),在RtADC中, (ac+6)2+62AC2,AC或6(舍弃),综上所述,当ABC是“类直角三角形”时,AC的长为 或【点睛】本题主要考查圆综合题,考查了相似三角形的判定和性质,“类直角三角形”的定义等知识, 解题的关键是理解题意,学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题.25、(1)(1)AC与O相切,证明见解析;(2)O半径是【解析】试题分析:(1)连结OE,如图,由BE平分ABD得到OBE=DBO,加上OBE=OEB,则OBE=DBO,于是可判断OEBD,再利用等腰三角形的性质得到BDAC,所以OEAC,于是根据切线的判定定理可得AC与O相切;(2)设O半径为r,则AO=10r,证明AOEABD,利用相似比得到,然后解方程求出r即可试题解析:(1)AC与O相切理由如下:连结OE,如图,BE平分ABD,OBE=DBO,OE=OB,OBE=OEB,OBE=DBO,OEBD,AB=BC,D是AC中点,BDAC,OEAC,AC与O相切;(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度文化传播公司公司挂靠文化传播合作协议3篇
- 2025年度食堂员工综合培训与服务合同3篇
- 二零二五年度全日制劳务合同书(新能源发电运维)3篇
- 二零二五年度农村土地承包权与农业科技应用合作合同3篇
- 2025年度养羊产业市场调研与分析合作协议2篇
- 二零二五年度劳动合同集合与劳动争议预防合同3篇
- 二零二五年度卫浴行业绿色环保产品认证合同3篇
- 2025年度光伏电站设备维修保养合同3篇
- 2025年度员工合同模板汇编:员工培训与发展计划篇2篇
- 2025年度新能源汽车充电桩合作股权协议书模板3篇
- 2024-2030年全球与中国汽车音频DSP芯片组市场销售前景及竞争策略分析报告
- 2025礼品定制合同范本
- 医院消毒隔离制度范文(2篇)
- 2024年01月11026经济学(本)期末试题答案
- 烘干煤泥合同范例
- 2025年“三基”培训计划
- 第20课 北洋军阀统治时期的政治、经济与文化 教案
- 住房公积金稽核审计工作方案例文(4篇)
- 山东省青岛实验高中2025届高三物理第一学期期末综合测试试题含解析
- 物理人教版2024版八年级上册6.2密度课件03
- 2024-2030年中国光纤传感器行业竞争格局及发展趋势分析报告
评论
0/150
提交评论