2021年高三第二次质量预测数学(理)试题_第1页
2021年高三第二次质量预测数学(理)试题_第2页
2021年高三第二次质量预测数学(理)试题_第3页
2021年高三第二次质量预测数学(理)试题_第4页
2021年高三第二次质量预测数学(理)试题_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 年高三第二次质量预测数学(理)试题 含答案本试卷分第 I 卷(选择题)和第 II 卷(非选择题)两部分.考试时间 120 分钟,满分 150 分.考生应首先阅读答题卡上的文字信息,然后在答题卡上作答在试题卷上作答无效.一、选题大题共 12 小题,小题 ,在每小题出的四选项中,只有一符合 题目求 .1.复数 z =3+i =1-I 则 z=的共轭复数在复平面内的对应点位于1 2A.第一象限 B.第二象限 C.第三象限 D.第四象限2.若-,则角的终边所在的直线为A. 7x+24y=0C. 24x+7y=0B. 7x-24y=0D.24x-7y=03_在数列a 中,a =ca (c;为非零常数)

2、,前 n 项和为 S = 3n+k,则实数 kn n+1 n n为A.-1 B.0 C.1 D.2 4. 设a分为两个不同的平面,直l,则l ” 的A.充分不必要条件 C.充要条件B.必要不充分条件D.既充分也不必要条件5. 若,则ab,c大小关系为A. cba B. bca C. abc D. bac 6. 已知函数 f(x)的函数为且足则 =A. 1 B. 1C. D. e7. 一个锥体的主视图和左视图如图所下面选项中,不可能是该锥体的俯视图的是8. 在二项式的展开式中,前三项的系数成等差数列,把展开式中所有的 项重新排成一列,有理项都互不相邻的概率为A. B. C. D.9. 如图所示F

3、 F2 是曲线(a0,b0)两个焦点,以坐标原O为圆心,|OF 为半径的圆与该双曲线左支的两个交点分别A,B,且 AB等边三角形,则双曲线的离心率为A. B.C. D.10. 函f(x)=ax(1-x)在间0上的图象如图所示,m的值可能是 A. 1C. 3B. 2D.411. 设(x)是定义在R上的增函,且对于任意工都有fx)+f(x)=0恒成立如实m、n满足不等式m+n的值范围是A. (3,7) B. C. D. (9,49) 12. 已函数所根的和为A. 0 B. C D.第II卷本卷包括必考題和选考題两部.第1题第1 第题24为选考 題考生根据要求作.:大题共4 题分.13.等差数列 前

4、7和等于 =1,a +a =0 _.14. M(3,2),若满不等式组则大值为_.15.已知不等式且 y2,3,该等式恒成则 实 a 的值范围 是_.16.过点 M(2,-2p)作物线 x=2py(p0)段 AB 的 点纵 坐标为 6,则 p 的值_.:答应写出说明文字,证明过程或演算步.17. (本题满分2分如图所示一辆汽车从点出发沿一条直线公路以0公里小时的速度勻速行驶(图中的箭头方向为汽车行驶方向),汽车开动的同时,在距汽车出发O点的距离为5公里,距离公路线的垂直距离为公里M点地方有一个人骑摩托车出发想把一件东西送给汽车司.骑摩托车的人至少以多大的速度勻速行驶才能实现他的愿望,此时 驾驶

5、摩托车行驶了多少公里?18. (本题满分2分每年的三月十二日,是中国的植树.林管部门在植树前,为保证树苗的质量都会在植树前对树苗进行检.现甲、乙两批树苗中各抽测了 株树苗的高度,规定高1厘米的为“良种树苗”,得高度如下单:厘)甲:137,120,129,119,132乙:110,130,147,127,146,114,126,110,144,146根据抽测结果,完成答题卷中的茎叶图,并根据你填写的茎叶图,对甲、乙两批树苗的高度作比较,写出对两种树苗高度 的统结论;设抽测1株种树苗髙度均值为将1株树苗的高度依次输人按程序框图进行运算,(如图)问输出S大小为多少?并说明的统计 学意义;)若小王在甲

6、批树苗中随机取了5株行种植,用样本的频率分估计总体分布, 求小王领取到的良树株数的分布.19. (本题满分2分柱BC-A B 的有棱长都为, 当 时求 AB 丄面 A BD; (II)当二面角AA DB的大小- 时, 求实的值20. (本题满分2分已知椭圆C: 的焦点为为点P 线 以PF 为直径的圆恒与 y 轴 相切.求曲线的程;(II)设 为标原点,是否存在同时满足下列两个条件的 APM点 M 在圆C上O为APM的重心若存在,求出点的坐标;若不存,说理.(若三角形 的点坐标为A ,y ),B(x ,y ),C(x ,y ),则其重心 G的标为, 21. (本题满分2分已知函数 f(x)=ln

7、x 与 g(x)=kx+b(k,bR)图象交于 , Q两点,曲线y=f(x)在P,两点处的切线交于A(I)当k = e, 时求(x) 的最大值(为自然常数)(II若,求实数 kb 值(本小题满分10 、 三个 方框中涂22.选修 4:证明选讲 和相于A、B点 为 BD 交 O点,点G 弧D 结 交BD 点EF结E. (I)求证AGEF=CEGD(II)23.选修 4坐标系与参数方程已知直线 t 线 (为参数)当时,求C 与 的交点坐标; 过坐标原点作 的垂,垂为,PO 当 求P点迹的参数方程,并指出它什么曲.24.选修 5不等式选讲已知函数 f(x)=|x(I)若不等式 f(x)3 的集x|-

8、1x,求实数 值;(II)I)的条件下,若 + 5)m对一切x恒立,求实m的值范围xx 年中毕业年级第二次质量预测数学(理科)一、选择题(每小题 5 分共 60 分) DDAA BCCD BACC二、填空题(每小题 5 分共 20 分)13612;151 或 三、解答题17解:作垂直公路所在直线于,则,2 分参考答案设骑摩托车的人的速度为公里/时追上汽车的时间为小时 由余弦定理 6 分 v25 1 25( t t t900 -8 分当时,的最小值为其行驶距离为公里11 分故骑摩托车的人至少以公里 时速度行驶才能实现他的愿望 , 他驾驶摩托车行驶了 公里. 12 分18解 ()茎叶图略 2 统计

9、结论:甲种树苗的平均高度小于乙种树苗的平均高甲种树苗比乙种树苗长得更整;甲种树苗的中位数为,乙种树苗的中位数;甲种树苗的高度基本上是对称的,而且大多数集中在均值附近,乙种树苗的高度分布较为分散. 每写出一个统计结论得 1 分 ()6 分表示株甲树苗高度的方差,是描述树苗高度离散程度的值越小,表示长得越整齐,值越大,表示长得越参差不齐 分()由题意,领取一株甲种树苗得到“良种树苗”的概率为,则 分 所以随机变量的分布列为0 1 2 3 4 5 分19.解)的中点为,连结在正三棱柱中面面,为正三角形,所以,故平面以 为 坐 标 原 点 建 立 如 图 空 间 直 角 坐 标系,2 分则所以,因为

10、0, AB 1 ,所以,又,所以平面 6 ()由得,所以,设平面的法向量,平面的法向量,由得平面的一个法向量为,同理可得平面的一个法向量,由,解得,为所求12 20),由题知,所以以为直径的圆的圆心,则,整理得,为所求 4 分()不存在,理由如下: 5 分若这样的三角形存在,由题可设,由条件知,由条件得,又因为点,所以即,故,9 分解之得或(舍当时,解得不合题意,所以同时满足两个条件的三角形不存在 分21、),则, 1 分当时, 此函数为增函数;当时, 此函数为减函数所以,为所求 4 分()设过点的直线与函数切于点,则其斜率,故切线,将点代入直线方程得:,即,7 分设,则,当时, 函为增函数;当时, 函数减函数故方程至多有两个实根, 10 分 又,所以方程的两个实根为和,故,所以为所求 分22明)结 、AC 为 的径,ABD=90, 为 的径,CEFAGD 2 分 为 中点,=GAB. 4 分CEFAGD , = CEGD 分()由知=FDG,G=,DFGAGD,= 8分由知, 10 分23)时C 的普通方程为C 的普通方程为, 联立方程组,解得 C 与 C 的点坐标为1,05 分 () 的通方程为, 点标为,故当变化时,P

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论