版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1在平面直角坐标系中,以原点为位似中心,位似比为:,将缩小,若点坐标,则点对应点坐标为( )A,BC或,D,或,2如图,转盘的红色扇形圆心角为120让转盘自由转动2次
2、,指针1次落在红色区域,1次落在白色区域的概率是()ABCD3如图,已知A、B是反比例函数上的两点,BCx轴,交y轴于C,动点P从坐标原点O出发,沿OABC匀速运动,终点为C,过运动路线上任意一点P作PMx轴于M,PNy轴于N,设四边形OMPN的面积为S,P点运动的时间为t,则S关于t的函数图象大致是( )ABCD4如图,一次函数yax+a和二次函数yax2的大致图象在同一直角坐标系中可能的是()ABCD5下列事件中是必然事件是( )A明天太阳从西边升起B篮球队员在罚球线投篮一次,未投中C实心铁球投入水中会沉入水底D抛出一枚硬币,落地后正面向上6方程的解是( )A0B3C0或3D0或37以半径
3、为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是( )ABCD8如图,在ABCD中,E是AB的中点,EC交BD于点F,则BEF与DCB的面积比为()ABCD9用配方法解方程x234x,配方后的方程变为( )A(x2)27B(x2)21C(x2)21D(x2)2210如图,BC是的直径,A,D是上的两点,连接AB,AD,BD,若,则的度数是( )ABCD二、填空题(每小题3分,共24分)11孙子算经是我国古代重要的数学著作,成书于约一千五百年前,其中有道歌谣算题:“今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问杆长几何?”歌谣的意思是:有一
4、根竹竿不知道有多长,量出它在太阳下的影子长一丈五,同时立一根一尺五的小标杆,它的影长五寸(提示:仗和尺是古代的长度单位,1丈10尺,1尺10寸),可以求出竹竿的长为_尺12若二次函数的图像经过点,则的值是_13如图,ABC中,ACB=90,BAC=20,点O是AB的中点,将OB绕点O顺时针旋转角时(0180),得到OP,当ACP为等腰三角形时,的值为_14下列四个函数:中,当x0时,y随x的增大而增大的函数是_(选填序号)15在半径为3cm的圆中,长为cm的弧所对的圆心角的度数为_.16已知二次函数的图象如图所示,下列结论:;,其中正确的是_(把所有正确结论的序号都填在横线上)17某商品连续两
5、次降低10%后的价格为a元,则该商品的原价为_18点A(1,1)关于原点对称的点的坐标是_三、解答题(共66分)19(10分)如图,正方形FGHI各顶点分别在ABC各边上,AD是ABC的高, BC=10,AD=6.(1)证明:AFIABC;(2)求正方形FGHI的边长.20(6分)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,B点的坐标为(3,0),与y轴交于点C(0,3),点P是直线BC下方抛物线上的任意一点。(1)求这个二次函数y=x2+bx+c的解析式。(2)连接PO,PC,并将POC沿y轴对折,得到四边形POPC,如果四边形POPC为菱形,求点P的坐标
6、。21(6分)如图1,的余切值为2,点D是线段上的一动点(点D不与点A、B重合),以点D为顶点的正方形的另两个顶点E、F都在射线上,且点F在点E的右侧,联结,并延长,交射线于点P(1)点D在运动时,下列的线段和角中,_是始终保持不变的量(填序号);(2)设正方形的边长为x,线段的长为y,求y与x之间的函数关系式,并写出定义域;(3)如果与相似,但面积不相等,求此时正方形的边长22(8分)某公司研发了一种新产品,成本是200元/件,为了对新产品进行合理定价,公司将该产品按拟定的价格进行销售,调查发现日销量y(件)与单价x(元/件)之间存在一次函数关系y2x+800(200 x400)(1)要使新
7、产品日销售利润达到15000元,则新产品的单价应定为多少元?(2)为使公司日销售获得最大利润,该产品的单价应定为多少元?23(8分)如图,已知MN是O的直径,直线PQ与O相切于P点,NP平分MNQ(1)求证:NQPQ;(2)若O的半径R=3,NP=,求NQ的长24(8分)在平面直角坐标系中,已知点是直线上一点,过点分别作轴,轴的垂线,垂足分别为点和点,反比例函数的图象经过点. (1)若点是第一象限内的点,且,求的值;(2)当时,直接写出的取值范围.25(10分)如图,一次函数y=kx+b(k0)与反比例函数y=(m0)的图象有公共点A(1,a)、D(2,1)直线l与x轴垂直于点N(3,0),与
8、一次函数和反比例函数的图象分别交于点B、C(1)求一次函数与反比例函数的解析式;(2)根据图象回答,x在什么范围内,一次函数的值大于反比例函数的值;(3)求ABC的面积26(10分)如图,建筑物AB的高为6cm,在其正东方向有个通信塔CD,在它们之间的地面点M(B,M,D三点在一条直线上)处测得建筑物顶端A、塔项C的仰角分别为37和60,在A处测得塔顶C的仰角为30,则通信塔CD的高度(sin370.60,cos370.80,tan370.75,=1.73,精确到0.1m)参考答案一、选择题(每小题3分,共30分)1、C【分析】若位似比是k,则原图形上的点,经过位似变化得到的对应点的坐标是或【
9、详解】以原点O为位似中心,位似比为1:2,将缩小,点对应点的坐标为:或故选:C【点睛】本题考查了位似图形与坐标的关系此题比较简单,注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为,那么位似图形对应点的坐标比等于2、C【分析】画出树状图,由概率公式即可得出答案【详解】解:由图得:红色扇形圆心角为120,白色扇形的圆心角为240,红色扇形的面积:白色扇形的面积,画出树状图如图,共有9个等可能的结果,让转盘自由转动2次,指针1次落在红色区域,1次落在白色区域的结果有4个,让转盘自由转动2次,指针1次落在红色区域,1次落在白色区域的概率为;故选:C【点睛】本题考查了树状图和概率计算公式
10、,解决本题的关键是正确理解题意,熟练掌握树状图的画法步骤.3、A【详解】解:点P在AB上运动时,此时四边形OMPN的面积S=K,保持不变,故排除B、D;点P在BC上运动时,设路线OABC的总路程为l,点P的速度为a,则S=OCCP=OC(lat),因为l,OC,a均是常数,所以S与t成一次函数关系,故排除C故选A考点:动点问题的函数图象4、B【分析】根据a的符号分类,当a0时,在A、B中判断一次函数的图象是否相符;当a0时,在C、D中判断一次函数的图象是否相符【详解】解:当a0时,二次函数yax2的开口向上,一次函数yax+a的图象经过第一、二、三象限,A错误,B正确;当a0时,二次函数yax
11、2的开口向下,一次函数yax+a的图象经过第二、三、四象限,C错误,D错误故选:B【点睛】此题主要考查了二次函数与一次函数的图象,利用二次函数的图象和一次函数的图象的特点求解5、C【解析】必然事件就是一定会发生的事件,即发生的概率是1的事件,依据定义即可解决【详解】解:A、明天太阳从西边升起,是不可能事件,故不符合题意;B、篮球队员在罚球线投篮一次,未投中,是随机事件,故不符合题意;C、实心铁球投入水中会沉入水底,是必然事件,故符合题意; D、抛出一枚硬币,落地后正面向上,是随机事件,故不符合题意故选C6、D【解析】运用因式分解法求解.【详解】由得x(x-3)=0所以,x1=0,x2=3故选D
12、【点睛】掌握因式分解法解一元二次方程.7、D【解析】由于内接正三角形、正方形、正六边形是特殊内角的多边形,可构造直角三角形分别求出边心距的长,由勾股定理逆定理可得该三角形是直角三角形,进而可得其面积【详解】如图1,OC=1,OD=1sin30=;如图2,OB=1,OE=1sin45=;如图3,OA=1,OD=1cos30=,则该三角形的三边分别为:、,()2+()2=()2,该三角形是以、为直角边,为斜边的直角三角形,该三角形的面积是,故选:D【点睛】考查正多边形的外接圆的问题,应用边心距,半径和半弦长构成直角三角形,来求相关长度是解题关键。8、D【分析】根据平行四边形的性质得出AB=CD,A
13、BCD,根据相似三角形的判定得出BEFDCF,根据相似三角形的性质和三角形面积公式求出即可【详解】解:四边形ABCD是平行四边形,E为AB的中点,AB=DC=2BE,ABCD,BEFDCF,=,DF=2BF,=()2=,=,SBEF=SDCF,SDCB=SDCF,=,故选D.【点睛】本题考查了相似三角形的性质和判定和平行四边形的性质,能熟记相似三角形的性质是解此题的关键.9、C【分析】将方程常数项移到右边,未知项移到左边,然后两边都加上4,左边化为完全平方式,右边合并即可得到结果【详解】x2+3=4x,整理得:x2-4x=-3,配方得:x2-4x+4=4-3,即(x-2)2=1故选C.【点睛】
14、此题考查了解一元二次方程-配方法,利用此方法解方程时,首先将方程常数项移到右边,未知项移到左边,二次项系数化为1,然后方程两边都加上一次项系数一半的平方,左边化为完全平方式,开方即可求出解10、A【分析】连接AC,如图,根据圆周角定理得到,然后利用互余计算的度数【详解】连接AC,如图,BC是的直径,故答案为故选A【点睛】本题考查圆周角定理和推论,解题的关键是掌握圆周角定理和推论二、填空题(每小题3分,共24分)11、3【分析】根据同一时刻物高与影长成正比可得出结论【详解】解:设竹竿的长度为x尺,竹竿的影长一丈五尺15尺,标杆长一尺五寸15尺,影长五寸25尺,解得x3(尺)故答案为:3【点睛】本
15、题考查的是同一时刻物高与影长成正比,在解题时注意单位要统一12、1【分析】首先根据二次函数的图象经过点得到,再整体代值计算即可【详解】解:二次函数的图象经过点,=1,故答案为1【点睛】本题主要考查了二次函数图象上点的坐标特征,解题的关键是利用整体代值计算,此题比较简单13、40或70或100【分析】根据旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等先连结AP,如图,由旋转的性质得OP=OB,则可判断点P、C在以AB为直径的圆上,利用圆周角定理得BAP=BOP=,ACP=ABP=90,APC=ABC=70,然后分类讨论:当AP=AC时,AP
16、C=ACP,即90=70;当PA=PC时,PAC=ACP,即+20=90,;当CP=CA时,CAP=CAP,即+20=70,再分别解关于的方程即可【详解】连结AP,如图,点O是AB的中点,OA=OB,OB绕点O顺时针旋转角时(0180),得到OP,OP=OB,点P在以AB为直径的圆上,BAP=BOP=,APC=ABC=70,ACB=90,点P、C在以AB为直径的圆上,ACP=ABP=90,APC=ABC=70,当AP=AC时,APC=ACP,即90=70,解得=40;当PA=PC时,PAC=ACP,即+20=90,解得=70;当CP=CA时,CAP=CPA,即+20=70,解得=100,综上所
17、述,的值为40或70或100故答案为40或70或100考点:旋转的性质.14、【分析】分别根据一次函数、反比例函数和二次函数的单调性分别进行判断即可【详解】解:在y=-2x+1中,k=-20,则y随x的增大而减少;在y=3x+2中,k=3,则y随x的增大而增大;在中,k=-30,当x00时,在第二象限,y随x的增大而增大;在y=x2+2中,开口向上,对称轴为x=0,所以当x0时,y随x的增大而减小;综上可知满足条件的为:故答案为:【点睛】本题主要考查函数的增减性,掌握一次函数、反比例函数的增减性与k的关系,以及二次函数的增减性是解题的关键15、【分析】根据弧长公式求解即可.【详解】 故本题答案
18、为:.【点睛】本题考查了圆的弧长公式,根据已知条件代入计算即可,熟记公式是解题的关键.16、【分析】由图形先得到a,b,c和b2-4ac正负性,再来观察对称轴和x=-1时y的值,综合得出答案.【详解】解:开口向上的,与轴的交点得出,对,对抛物线与轴有两个交点,对从图可以看出当时,对应的值大于0,错故答案:【点睛】此题考查二次函数图象与系数的关系,解题关键在于掌握其函数图象与关系.17、元【分析】设商品原价为x元,则等量关系为原价=现价,根据等量关系列出方程即可求解【详解】设该商品的原价为x元,根据题意得解得故答案为元【点睛】本题考查了一元二次方程实际应用中的增长率问题,本剧题意列出方程是本题的
19、关键18、(1,1)【分析】直接利用关于原点对称点的性质得出答案【详解】解:点A(1,1)关于原点对称的点的坐标是:(1,1)故答案为:(1,1)【点睛】此题主要考查了关于原点对称的点的坐标,正确记忆横纵坐标的符号关系是解题关键三、解答题(共66分)19、(1)见解析;(2)正方形FGHI的边长是.【分析】(1)由正方形得出,从而得出两组对应相等的角,由相似三角形的判定定理即可得证;(2)由题(1)的结论和AD是的高可得,将各值代入求解即可.【详解】(1)四边形FGHI是正方形 ,即(两直线平行,同位角相等);(2)设正方形FGHI的边长为x由题(1)得的结论和AD是的高,解得故正方形FGHI
20、的边长是.【点睛】本题考查了平行线的性质、相似三角形的判定定理与性质,熟记判定定理和性质是解题关键.20、(1)二次函数的解析式为;(2)P()时,四边形POPC为菱形.【分析】(1)将点B、C的坐标代入解方程组即可得到函数解析式;(2)根据四边形POPC为菱形,得到,且与OC互相垂直平分,可知点P的纵坐标为,将点P的纵坐标代入解析式即可得到横坐标,由此得到答案.【详解】(1)将点B(3,0)、C(0,3)的坐标代入y=x2+bx+c,得,二次函数的解析式为;(2)如图,令中x=0,得y=-3,C(0,-3)四边形POPC为菱形,且与OC互相垂直平分,点P的纵坐标为,当y=时, ,得: ,点P
21、是直线BC下方抛物线上的任意一点,P()时,四边形POPC为菱形.【点睛】此题考查二次函数的待定系数法求解析式、菱形的性质,(2)根据菱形的对角线互相垂直平分得到点P的纵坐标,由此解答问题.21、(1);(2);(3)或.【分析】(1)作于M,交于N,如图,利用三角函数的定义得到,设,则,利用勾股定理得,解得,即,设正方形的边长为x,则,由于,则可判断为定值;再利用得到,则可判断为定值;在中,利用勾股定理和三角函数可判断在变化,在变化,在变化;(2)易得四边形为矩形,则,证明,利用相似比可得到y与x的关系式;(3)由于,与相似,且面积不相等,利用相似比得到,讨论:当点P在点F点右侧时,则,所以
22、,当点P在点F点左侧时,则,所以,然后分别解方程即可得到正方形的边长【详解】(1)如图,作于M,交于N, 在中,设,则,解得,设正方形的边长为x,在中,在中,为定值;,为定值;在中,而在变化,在变化,在变化,在变化,所以和是始终保持不变的量;故答案为:(2)MNAP,DEFG是正方形,四边形为矩形,即,(3),与相似,且面积不相等,即,当点P在点F点右侧时,AP=AF+PF=,解得,当点P在点F点左侧时,解得,综上所述,正方形的边长为或【点睛】本题考查了相似形综合题:熟练掌握锐角三角函数的定义、正方形的性质和相似三角形的判定与性质22、(1)要使新产品日销售利润达到15000元,则新产品的单价
23、应定为250元或350元;(2)为使公司日销售获得最大利润,该产品的单价应定为300元【分析】(1)根据“总利润=每件的利润销量”列出一元二次方程即可求出结论;(2)设公司日销售获得的利润为w元,根据“总利润=每件的利润销量”即可求出w与x的函数关系式,然后利用二次函数求最值即可【详解】(1)根据题意得,(2x+800)(x200)15000,解得:x1250,x2350,答要使新产品日销售利润达到15000元,则新产品的单价应定为250元或350元;(2)设公司日销售获得的利润为w元,根据题意得,wy(x200)(2x+800)(x200)2x2+1200 x1600002(x300)2+2
24、0000,20,当x300时,获得最大利润为20000元,答:为使公司日销售获得最大利润,该产品的单价应定为300元【点睛】此题考查的是一元二次方程的应用和二次函数的应用,掌握实际问题中的等量关系和利用二次函数求最值是解决此题的关键23、(1)见解析;(2)【分析】(1)连接OP,则OPPQ,然后证明OP/NQ即可(2)连接MP,在RtMNP中,利用三角函数求得MNP的度数,即可求得PNQ的值,然后在RtPNQ中利用三角函数即可求解【详解】(1)证明:连接OP,直线PQ与O相切于P点,OPPQ,即OPQ=90,OP=ON,OPN=ONP又NP平分MNQ,OPN=PNQOP/NQNQP=180-
25、OPQ=90,NQPQ(2)连接MP,MN是直径,MPN=90,MNP=30PNQ=30在RtPNQ中,NQ=NPcos30=【点睛】本题考查了切线的性质,解直角三角形,正确添加辅助线,灵活运用相关知识是解题的关键24、(1);(2)且.【分析】(1)设点,根据,得到,代入,求得的坐标,即可求得答案;(2)依照(1),求得时的A点的坐标,根据题意,画出函数图象,然后根据函数的图象直接求出k的取值范围即可【详解】(1)依题意,设点, , ,点在直线上,点的坐标为, 点在函数的图像上,;(2)依题意,设点, ,点在直线上,点的坐标为或 ,点在函数的图像上,或,观察图象,当且时,.【点睛】此题属于反比例函数与一次函数的综合题,涉及的知识有:待定系数法求函数解析式,一次函数与反比例函数的交点,坐标与图形性质,此类题要先求特殊位置时对应的k值,利用数形结合的思想,依照题意画出图形,利用数形结合找出k的取值范围25、(1)反比例函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年金属层状复合材料项目资金申请报告代可行性研究报告
- 2024年医用射线防护用品装置项目资金筹措计划书代可行性研究报告
- 二十四式太极拳教案
- 上海市县(2024年-2025年小学五年级语文)人教版能力评测((上下)学期)试卷及答案
- 关于国民安全
- 平足支撑物产业深度调研及未来发展现状趋势
- 手镯首饰市场需求与消费特点分析
- USB集线器市场发展预测和趋势分析
- 化妆用滋养霜产业深度调研及未来发展现状趋势
- 可视电话产业规划专项研究报告
- 小学三年级数学口算 3位乘或除1位第1-10篇
- 介绍南昌八一广场的英语作文
- 【历史】七年级上册期中复习(1-15课)(复习课件) 2024-2025学年七年级历史上册(统编版2024)
- 小学语文阅读校本课程设计方案
- DB3301-T 1139-2024 地理标志产品 千岛湖鲢鳙
- 2024年河北廊坊开发区管理委员会聘用制人员招聘40人历年高频500题难、易错点模拟试题附带答案详解
- 2024-2030年中国陶瓷珠市场发展趋势及投资可行性价值评估报告
- Unit 5 The colourful world (教学设计)-2024-2025学年人教PEP版(2024)英语三年级上册
- 7.比较不同的土壤课件教科版科学四年级下册
- 供应链中的供应链合规性考核试卷
- 云南省八年级《信息技术》上册教案:第2课 探究因特网
评论
0/150
提交评论