浙江省义乌市七校2023学年数学九上期末达标检测试题含解析_第1页
浙江省义乌市七校2023学年数学九上期末达标检测试题含解析_第2页
浙江省义乌市七校2023学年数学九上期末达标检测试题含解析_第3页
浙江省义乌市七校2023学年数学九上期末达标检测试题含解析_第4页
浙江省义乌市七校2023学年数学九上期末达标检测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一

2、并交回。一、选择题(每小题3分,共30分)1用16米长的铝制材料制成一个矩形窗框,使它的面积为9平方米,若设它的一边长为x,根据题意可列出关于x的方程为( )ABCD2抛物线的部分图象如图所示,当时,x的取值范围是( )Ax2 或x3B3x2Cx2或x4D4x23在RtABC中,C90,若斜边AB是直角边BC的3倍,则tanB的值是( )AB3CD24关于x的方程ax2+bx+c0是一元二次方程,则满足()Aa0Ba0Ca0D全体实数5在平面直角坐标系中,的直径为10,若圆心为坐标原点,则点与的位置关系是( )A点在上B点在外C点在内D无法确定6设A( x1 , y1)、B (x2 , y2)

3、是反比例函数 图象上的两点若x1x20,则y1与y2之间的关系是( )Ay1y20By2y10Cy2y10Dy1y207如图,在ABC中,点D、E、F分别在边AB、AC、BC上,且AEDB,再将下列四个选项中的一个作为条件,不一定能使得ADE和BDF相似的是( )ABCD8对于二次函数的图象,下列说法正确的是( )A开口向下B顶点坐标是C对称轴是直线D与轴有两个交点9从1,0,1,2,3这五个数中,任意选一个数记为m,能使关于x的不等式组有解,并且使一元二次方程(m1)x2+2mx+m+20有实数根的数m的个数为()A1个B2个C3个D4个10如图,中,将绕着点旋转至,点的对应点点恰好落在边上

4、若,则的长为( )ABCD二、填空题(每小题3分,共24分)11如图,点,在上,则_12若(m+1)xm(m+21)+2mx1=0是关于x的一元二次方程,则m的值是_13一个圆锥的底面圆的半径为3,母线长为9,则该圆锥的侧面积为_14如图,已知O的半径是2,点A、B、C在O上,若四边形OABC为菱形,则图中阴影部分面积为_15如图,在平面直角坐标系中,点A在抛物线y=x22x+2上运动过点A作ACx轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为_16如图,在边长为9的正三角形ABC中,BD=3,ADE=60,则AE的长为17如图在RtOAB中AOB20,将OAB绕点O

5、逆时针旋转100得到OA1B1,则A1OB_18如图,反比例函数y(x0)经过A,B两点,过点A作ACy轴于点C,过点B作BDy轴于点D,过点B作BEx轴于点E,连接AD,已知AC1,BE1,SACD,则S矩形BDOE_三、解答题(共66分)19(10分)若的整数部分为,小数部分为;(1)直接写出_,_;(2)计算的值.20(6分)小淇准备利用38m长的篱笆,在屋外的空地上围成三个相连且面积相等的矩形花园围成的花园的形状是如图所示的矩形CDEF,矩形AEHG和矩形BFHG若整个花园ABCD(ABBC)的面积是30m2,求HG的长21(6分)先化简,再求值的值,其中.22(8分)庄子天下:“一尺

6、之棰,日取其半,万世不竭”意思是说:一尺长的木棍,每天截掉一半,永远也截不完我国智慧的古代人在两千多年前就有了数学极限思想,今天我们运用此数学思想研究下列问题(规律探索)(1)如图1所示的是边长为1的正方形,将它剪掉一半,则S阴影11如图2,在图1的基础上,将阴影部分再裁剪掉半,则S阴影21()2 _;同种操作,如图3,S阴影31()2()3 _;如图4,S阴影41()2()3()4 _;若同种地操作n次,则S阴影n1()2()3()n _于是归纳得到:+()2+()3+()n =_(理论推导)(2)阅读材料:求1+2+22+23+24+22015+22016的值解:设S=1+2+22+23+

7、24+22015+22016,将2得:2S=2+22+23+24+22016+22017,由-得:2SS=220171,即=22017-1即1+2+22+23+24+22015+2201622017-1根据上述材料,试求出+()2+()3+()n 的表达式,写出推导过程(规律应用)(3)比较 _1(填“”、“”或“=”)23(8分)天门山索道是世界最长的高山客运索道,位于张家界天门山景区在一次检修维护中,检修人员从索道A处开始,沿ABC路线对索道进行检修维护如图:已知米,米,AB与水平线的夹角是,BC与水平线的夹角是求:本次检修中,检修人员上升的垂直高度是多少米?(结果精确到1米,参考数据:)

8、24(8分)在平面直角坐标系中,已知P(,),R(,)两点,且,若过点P作轴的平行线,过点R作轴的平行线,两平行线交于一点S,连接PR,则称PRS为点P,R,S的“坐标轴三角形”.若过点R作轴的平行线,过点P作轴的平行线,两平行线交于一点,连接PR,则称RP为点R,P,的“坐标轴三角形”.右图为点P,R,S的“坐标轴三角形”的示意图.(1)已知点A(0,4),点B(3,0),若ABC是点A,B,C的“坐标轴三角形”,则点C的坐标为 ;(2)已知点D(2,1),点E(e,4),若点D,E,F的“坐标轴三角形”的面积为3,求e的值.(3)若的半径为,点M(,4),若在上存在一点N,使得点N,M,G

9、的“坐标轴三角形”为等腰三角形,求的取值范围.25(10分)如图,在与中,.(1)与的数量关系是:_.(2)把图中的绕点旋转一定的角度,得到如图所示的图形.求证:.若延长交于点,则与的数量关系是什么?并说明理由.(3)若,把图中的绕点顺时针旋转,直接写出长度的取值范围.26(10分)如图,在RtABC中,C=90,AC=8,BC=6,P为边BC上一个动点(可以包括点C但不包括点B),以P为圆心PB为半径作P交AB于点D过点D作P的切线交边AC于点E,(1)求证:AE=DE;(2)若PB=2,求AE的长;(3)在P点的运动过程中,请直接写出线段AE长度的取值范围参考答案一、选择题(每小题3分,共

10、30分)1、B【分析】一边长为x米,则另外一边长为:8-x,根据它的面积为9平方米,即可列出方程式【详解】一边长为x米,则另外一边长为:8-x,由题意得:x(8-x)=9,故选:B【点睛】此题考查由实际问题抽相出一元二次方程,解题的关键读懂题意列出方程式2、C【分析】先根据对称轴和抛物线与x轴的交点求出另一交点;再根据开口方向,结合图形,求出y0时,x的取值范围【详解】解:因为抛物线过点(2,0),对称轴是x= -1,根据抛物线的对称性可知,抛物线必过另一点(-1,0),因为抛物线开口向下,y5,点P在外.故选:B.【点睛】本题考查点和直线的位置关系,当dr时点在圆外,当d=r时,点在圆上,当

11、d0,函数图象的两个分支位于一、三象限,且在每一象限内y随x的增大而减小,x1x10,0y1y1故选:B【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键7、C【解析】试题解析:C. 两组边对应成比例及其夹角相等,两三角形相似.必须是夹角,但是不一定等于 故选C.点睛:三角形相似的判定方法:两组角对应相等,两个三角形相似.两组边对应成比例及其夹角相等,两三角形相似.三边的比相等,两三角形相似.8、B【分析】根据二次函数基本性质逐个分析即可.【详解】A.a=3, 开口向上,选项A错误B. 顶点坐标是,B是正确的C. 对称轴是直线

12、,选项C错误D. 与轴有没有交点,选项D错误故选:B【点睛】本题考核知识点:二次函数基本性质:顶点、对称轴、交点.解题关键点:熟记二次函数基本性质.9、B【分析】根据一元一次不等式组可求出m的范围,根据判别式即可求出答案【详解】解:22mx2+m,由题意可知:22m2+m,m0,由于一元二次方程(m1)x2+2mx+m+20有实数根,4m24(m1)(m+2)84m0,m2,m10,m1,m的取值范围为:0m2且m1,m0或2故选:B【点睛】本题考查不等式组的解法以及一元二次方程,解题的关键是熟练运用根的判别式10、A【分析】先在直角三角形ABC中,求出AB,BC,然后证明ABD为等边三角形,

13、得出BD=AB=2,再根据CD=BC-BD即可得出结果【详解】解:在RtABC中,AC=2,B=60,BC=2AB,BC2=AC2+AB2,4AB2=AC2+AB2,AB=2,BC=4,由旋转得,AD=AB,B=60,ABD为等边三角形,BD=AB=2,CD=BC-BD=4-2=2,故选:A【点睛】此题主要考查了旋转的性质,含30角的直角三角形的性质,勾股定理以及等边三角形的判定与性质,解本题的关键是综合运用基本性质二、填空题(每小题3分,共24分)11、70【分析】根据=,得到,根据同弧所对的圆周角相等即可得到,根据三角形的内角和即可求出.【详解】=,故答案为【点睛】考查圆周角定理和三角形的

14、内角和定理,熟练掌握圆周角定理是解题的关键.12、2或2【解析】本题根据一元二次方程的定义求解一元二次方程必须满足两个条件:(2)未知数的最高次数是2;(2)二次项系数不为2由这两个条件得到相应的关系式,再求解即可【详解】由题意得:解得m2或2故答案为:2或2【点睛】考查一元二次方程的定义的运用,一元二次方程注意应着重考虑未知数的最高次项的次数为2,系数不为213、【分析】先求出底面圆的周长,然后根据扇形的面积公式:即可求出该圆锥的侧面积【详解】解:底面圆的周长为,即圆锥的侧面展开后的弧长为,母线长为9,圆锥的侧面展开后的半径为9,圆锥的侧面积故答案为:【点睛】此题考查的是求圆锥的侧面积,掌握

15、扇形的面积公式:是解决此题的关键14、【分析】连接OB和AC交于点D,根据菱形及直角三角形的性质先求出AC的长及AOC的度数,然后求出菱形ABCO及扇形AOC的面积,则由S扇形AOC-S菱形ABCO可得答案【详解】连接OB和AC交于点D,如图所示:圆的半径为2,OBOAOC2,又四边形OABC是菱形,OBAC,OD OB1,在RtCOD中利用勾股定理可知: COD60,AOC2COD120,S菱形ABCOS扇形AOC则图中阴影部分面积为S扇形AOCS菱形ABCO故答案为【点睛】本题考查扇形面积的计算及菱形的性质,解题关键是熟练掌握菱形的面积和扇形的面积,有一定的难度15、1【分析】根据矩形的性

16、质得到BD=AC,所以求BD的最小值就是求AC的最小值,当点A在抛物线顶点的时候AC是最小的【详解】解:,抛物线的顶点坐标为(1,1),四边形ABCD为矩形,BD=AC,而ACx轴,AC的长等于点A的纵坐标,当点A在抛物线的顶点时,点A到x轴的距离最小,最小值为1,对角线BD的最小值为1故答案为:1【点睛】本题考查矩形的性质和二次函数图象的性质,解题的关键是通过矩形的性质将要求的BD转化成可以求最小值的AC16、7【解析】试题分析:ABC是等边三角形,B=C=60,AB=BCCD=BCBD=93=6,;BAD+ADB=120ADE=60,ADB+EDC=120DAB=EDC又B=C=60,AB

17、DDCE,即17、80【分析】由将OAB绕点O逆时针旋转100得到OA1B1,可求得A1OA的度数,继而求得答案【详解】将OAB绕点O逆时针旋转100得到OA1B1,A1OA100,AOB20,A1OBA1OAAOB80故答案为:80【点睛】此题考查了旋转的性质注意找到旋转角是解此题的关键18、1【分析】根据三角形的面积求出CD,OC,进而确定点A的坐标,代入求出k的值,矩形BDOE的面积就是|k|,得出答案【详解】AC1,SACD,CD3,ODBE是矩形,BE1,OD1,OCOD+CD1,A(1,1)代入反比例函数关系式得,k1,S矩形BDOE|k|1,故答案为:1【点睛】本题考查了反比例函

18、数的几何问题,掌握反比例函数的性质以及三角形的面积公式是解题的关键三、解答题(共66分)19、(1),;(2).【分析】先根据算术平方根的定义得到12,则x=1,y=-1,然后把x、y的值代入,再进行二次根式的混合运算即可【详解】解: 解:134,12,x=1,y=-1,(2)当时,原式【点睛】本题考查估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算也考查二次根式的混合运算20、的长是【分析】设的长为,将BC,AB表示出来,再利用整个花园面积为30 m2列出方程,解之即可.【详解】解:设的长为,则,由题意得,解得,不合题意,舍去答:的长是.【点睛】此题考查一元二次方程的实际运

19、用,掌握长方形的面积计算公式是解决问题的关键21、;【分析】先算括号里面的,再算除法,根据特殊角的三角函数值先得出x,再代入即可【详解】原式当时,原式【点睛】本题考查了分式的化简求值以及特殊角的三角函数值,是基础知识要熟练掌握22、(1);()n;1 - ()n ;(2)+()2+()3+()n = 1-()n,推导过程见解析;(3)=【分析】(1)根据有理数的混合运算计算前几项结果,并观察得出规律即可得解(2)根据材料中的计算求和的方法即可求解;(3)根据(2)的化简结果,结合极限思想即可比较大小【详解】解:(1)S阴影21()2=1-=,S阴影31()2()3=1-=,S阴影41()2()

20、3()4=,S阴影n1()2()3()n=()n,于是归纳得到:+()2+()3+()n =1 - ()n故答案为:;()n;1 - ()n (2)解:设S = +()2+()3+()n, 将得:S = ()2+()3 +)4 +()n + ()n+1 ,得:S = - ()n+1 ,将2得:S = 1-()n 即得+()2+()3+()n = 1-()n (3)=,理由如下:=1-()n ,当n越来越大时,()n越来越小,越来越接近零,由极限的思想可知:当n趋于无穷时,()n就等于0,故1-()n就等于1,故答案为:=【点睛】本题考查了数字的变化类、有理数的混合运算,解决的本题的关键是寻找规

21、律并利用规律23、检修人员上升的垂直高度为943米【解析】如图,过点B作于点H,在中先求出BH的长,继而求出A1B1的长,一次方程的应用等知识,弄清是法运算,最后选择使原式有意义有在中,根据三角函数求出B1C的长,即可求得结论.【详解】如图,过点B作于点H在中,(米),(米),在中,检修人员上升的垂直高度(米)答:检修人员上升的垂直高度为943米【点睛】本题考查了解直角三角形的应用,添加辅助线,构建直角三角形是解题的关键.24、(1)(3,4);(2)或;(3)m的取值范围是或.【分析】(1)根据点C到x轴、y轴的距离解答即可;(2)根据“坐标轴三角形”的定义求出线段DF和EF,然后根据三角形

22、的面积公式求解即可;(3)根据题意可得:符合题意的直线MN应为y=x+b或y=x+b当直线MN为y=x+b时,结合图形可得直线MN平移至与O相切,且切点在第四象限时,b取得最小值,根据等腰直角三角形的性质和勾股定理可求得b的最小值,进而可得m的最大值;当直线MN平移至与O 相切,且切点在第二象限时,b取得最大值,根据等腰直角三角形的性质和勾股定理可求得b的最大值,进而可得m的最小值,可得m的取值范围;当直线MN为y=x+b时,同的方法可得m的另一个取值范围,问题即得解决.【详解】解:(1)根据题意作图如下:由图可知:点C到x轴距离为4,到y轴距离为3,C(3,4);故答案为:(3,4);(2)

23、 点D(2,1),点E(e,4),点D,E,F的“坐标轴三角形”的面积为3,即=2,解得:e=4或e=0;(3)由点N,M, G的“坐标轴三角形”为等腰三角形可得:直线MN为y=x+b或y=x+b.当直线MN为y=x+b时,由于点M的坐标为(m,4),可得m=4b,由图可知:当直线MN平移至与O相切,且切点在第四象限时,b取得最小值.此时直线MN记为M1 N1,其中N1为切点,T1为直线M1 N1与y轴的交点.O N1T1为等腰直角三角形,ON=,b的最小值为3,m的最大值为m=4b=7;当直线MN平移至与O 相切,且切点在第二象限时,b取得最大值.此时直线MN记为M2 N2,其中N2为切点,T2为直线M2 N2与y轴的交点.ON2T为等腰直角三角形,ON2=,b的最大值为3,m的最小值为m=4b=1,m的取值范围是;当直线MN为y=x+b时,同理可得,m=b4,当b=3时,m=1;当b=3时,m=7;m的取值范围是.综上所述,m的取值范围是或.【点睛】本题是新定义概念题,主要考查了三角形的面积、直线与圆相切的性质、等腰三角形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论