黑龙江省哈尔滨市第35中学2023学年九年级数学第一学期期末经典试题含解析_第1页
黑龙江省哈尔滨市第35中学2023学年九年级数学第一学期期末经典试题含解析_第2页
黑龙江省哈尔滨市第35中学2023学年九年级数学第一学期期末经典试题含解析_第3页
黑龙江省哈尔滨市第35中学2023学年九年级数学第一学期期末经典试题含解析_第4页
黑龙江省哈尔滨市第35中学2023学年九年级数学第一学期期末经典试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题3分,共30分)1两个相似三角形对应高之比为,那么它们的对应中线之比为( )A

2、BCD2某射击运动员在同一条件下的射击成绩记录如表:射击次数1002004001000“射中9环以上”的次数78158321801“射中9环以上”的频率0.780.790.80250.801根据表中数据,估计这位射击运动员射击一次时“射中9环以上”的概率为()A0.78B0.79C0.85D0.803如图是由几个大小相同的小正方体组成的立体图形的俯视图,则这个立体图形可能是下图中的( )ABCD4如图,边长为的正六边形内接于,则扇形(图中阴影部分)的面积为()ABCD5二次函数的图像如图所示,它的对称轴为直线,与轴交点的横坐标分别为,且.下列结论中:;方程有两个相等的实数根;.其中正确的有(

3、)ABCD6帅帅收集了南街米粉店今年6月1日至6月5日每天的用水量(单位:吨),整理并绘制成如下折线统计图下列结论正确的是( )A极差是6B众数是7C中位数是5D方差是87抛物线y=(x+1)2+2的顶点()A(1,2) B(2,1) C(1,2) D(1,2)8如图,菱形的对角线,相交于点,过点作于点,连接,若,则的长为( )A3B4C5D69若点在反比例函数的图象上,则关于的二次方程的根的情况是( )A有两个不相等的实数根B有两个相等的实数根C没有实数根D无法确定10如图,已知ABC中,AE交BC于点D,C=E,AD:DE=2:3,AE=10,BD=5,则DC的长是( )ABCD二、填空题

4、(每小题3分,共24分)11小球在如图6所示的地板上自由滚动,并随机停留在某块正方形的地砖上,则它停在白色地砖上的概率是_.12如图,已知O的半径为2,四边形ABCD是O的内接四边形,ABCAOC,且ADCD,则图中阴影部分的面积等于_13如图是某几何体的三视图及相关数据,则该几何体的侧面积是_14在等腰ABC中,ABAC4,BC6,那么cosB的值_15一个三角形的两边长为2和9,第三边长是方程x214x+48=0的一个根,则三角形的周长为_16分解因式:17如图,现有测试距离为5m的一张视力表,表上一个E的高AB为2cm,要制作测试距离为3m的视力表,其对应位置的E的高CD为_cm18方程

5、(x1)(x3)0的解为_三、解答题(共66分)19(10分)大学生小李和同学一起自主创业开办了一家公司,公司对经营的盈亏情况在每月的最后一天结算一次.在112月份中,该公司前x个月累计获得的总利润y(万元)与销售时间x(月)之间满足二次函数关系.(1)求y与x函数关系式.(2)该公司从哪个月开始“扭亏为盈”(当月盈利)? 直接写出9月份一个月内所获得的利润.(3)在前12 个月中,哪个月该公司所获得利润最大?最大利润为多少?20(6分)某水果公司以2元/千克的成本购进10000千克柑橘,销售人员在销售过程中随机抽取柑橘进行“柑橘损坏率”统计,并绘制成如图所示的统计图,根据统计图提供的信息解决

6、下面问题:(1)柑橘损坏的概率估计值为 ;估计这批柑橘完好的质量为 千克(2)若希望这批柑橘能够获得利润5000元,那么在出售柑橘(只卖好果)时,每千克大约定价为多少元比较合适?(精确到0.1)21(6分)如图在RtABC中,C=90,BD平分ABC,过D作DEBD交AB于点E,经过B,D,E三点作O(1)求证:AC与O相切于D点;(2)若AD=15,AE=9,求O的半径22(8分)某商店购进一种商品,每件商品进价30元试销中发现这种商品每天的销售量y(件)与每件销售价x(元)的关系数据如下:x30323436y40363228(1)已知y与x满足一次函数关系,根据上表,求出y与x之间的关系式

7、(不写出自变量x的取值范围);(2)如果商店销售这种商品,每天要获得150元利润,那么每件商品的销售价应定为多少元?(3)设该商店每天销售这种商品所获利润为w(元),求出w与x之间的关系式,并求出每件商品销售价定为多少元时利润最大?23(8分)如图,抛物线与轴交于,两点(1)求该抛物线的解析式;(2)若抛物线交轴于点,在该抛物线的对称轴上是否存在点,使得的周长最小?若存在,求出点的坐标;若不存在,请说明理由24(8分)交通工程学理论把在单向道路上行驶的汽车看成连续的流体,并用流量、速度、密度三个概念描述车流的基本特征,其中流量(辆小时)指单位时间内通过道路指定断面的车辆数;速度(千米小时)指通

8、过道路指定断面的车辆速度,密度(辆千米)指通过道路指定断面单位长度内的车辆数为配合大数据治堵行动,测得某路段流量与速度之间关系的部分数据如下表:速度v(千米/小时)流量q(辆/小时)(1)根据上表信息,下列三个函数关系式中,刻画,关系最准确是_(只填上正确答案的序号);(2)请利用(1)中选取的函数关系式分析,当该路段的车流速度为多少时,流量达到最大?最大流量是多少?(3)已知,满足,请结合(1)中选取的函数关系式继续解决下列问题:市交通运行监控平台显示,当时道路出现轻度拥堵试分析当车流密度在什么范围时,该路段将出现轻度拥堵?25(10分)一个不透明的口袋中装有4张卡片,卡片上分别标有数字1,

9、3,5,7,这些卡片除数字外都相同,小芳从口袋中随机抽取一张卡片,小明再从剩余的三张卡片中随机抽取一张,请你用画树状图或列表的方法,求两人抽到的数字符号相同的概率26(10分)一次函数分别与轴、轴交于点、.顶点为的抛物线经过点.(1)求抛物线的解析式;(2)点为第一象限抛物线上一动点.设点的横坐标为,的面积为.当为何值时,的值最大,并求的最大值;(3)在(2)的结论下,若点在轴上,为直角三角形,请直接写出点的坐标.参考答案一、选择题(每小题3分,共30分)1、A【分析】根据相似三角形对应高的比等于相似比,对应中线的比等于相似比解答【详解】两个相似三角形对应高之比为1:2,它们的相似比是1:2,

10、它们对应中线之比为1:2.故选A.【点睛】此题考查相似三角形的性质,解题关键在于掌握其性质.2、D【分析】根据大量的实验结果稳定在0.8左右即可得出结论【详解】从频率的波动情况可以发现频率稳定在0.1附近,这名运动员射击一次时“射中9环以上”的概率是0.1故选:D【点睛】本题考查利用频率估计概率,在相同的条件下做大量重复试验,一个事件A出现的次数和总的试验次数n之比,称为事件A在这n次试验中出现的频率当试验次数n很大时,频率将稳定在一个常数附近n 越大,频率偏离这个常数较大的可能性越小这个常数称为这个事件的概率3、D【分析】由俯视图判断出组合的正方体的几何体的列数即可【详解】根据给出的俯视图,

11、这个立体图形的第一排至少有3个正方体,第二排有1个正方体故选:D【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案4、B【分析】根据已知条件可得出,圆的半径为3,再根据扇形的面积公式()求解即可.【详解】解:正六边形内接于,是等边三角形,扇形的面积,故选:【点睛】本题考查的知识点求扇形的面积,熟记面积公式并通过题目找出圆心角的度数与圆的半径是解题的关键5、A【分析】利用抛物线开口方向得到a0,利用对称轴位置得到b0,利用抛物线与y轴的交点在x轴下方得c0,则可对进行判断;根据二次函数的对称

12、性对进行判断;利用抛物线与直线y=2的交点个数对进行判断,利用函数与坐标轴的交点列出不等式即可判断.【详解】抛物线开口向下,a0,对称轴为直线b=-2a0抛物线与y轴的交点在x轴下方,c-1,abc0,所以错误;,对称轴为直线故,正确;对称轴x=1,当x=0,x=2时,y值相等,故当x=0时,y=c0,当x=2时,y=,正确;如图,作y=2,与二次函数有两个交点,故方程有两个不相等的实数根,故错误;当x=-1时,y=a-b+c=3a+c0,当x=0时,y=c-13a1,故,正确;故选A.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数yax2bxc(a0),二次项系数a决定抛物线的开口

13、方向和大小当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置 当a与b同号时(即ab0),对称轴在y轴左; 当a与b异号时(即ab0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c)也考查了二次函数的性质6、D【分析】根据极差、众数、中位数及方差的定义,依次计算各选项即可作出判断【详解】解:由图可知,6月1日至6月5日每天的用水量是:5,7,11,3,1A极差,结论错误,故A不符合题意;B众数为5,7,11,3,1,结论错误,故B不符合题意;C这5个数按从小到大的顺序排列为:3,5,7,1,11,中位数为7,结论错误

14、,故C不符合题意;D平均数是,方差结论正确,故D符合题意故选D【点睛】本题考查了折线统计图,重点考查了极差、众数、中位数及方差的定义,根据图表准确获取信息是解题的关键7、A【解析】由抛物线顶点坐标公式y=a(xh)2+k中顶点坐标为(h,k)进行求解【详解】解:y=(x+1)2+2,抛物线顶点坐标为(1,2),故选:A【点睛】考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(xh)2+k中,顶点坐标为(h,k),对称轴为直线x=h8、A【分析】根据菱形面积的计算公式求得AC,再利用直角三角形斜边中线的性质即可求得答案.【详解】四边形ABCD是菱形,OB=4,;AHBC,.故选:

15、A.【点睛】本题考查了菱形的性质及直角三角形斜边的中线等于斜边的一半的性质,根据菱形的面积公式:菱形的面积等于两条对角线乘积的一半是解题的关键.9、A【分析】将点P的坐标代入反比例函数的表达式中求出k的值,进而得出一元二次方程,根据根的判别式进行判断即可【详解】点在反比例函数的图象上,即,关于的二次方程为,方程有两个不相等的实数根,故选A【点睛】本题考查利用待定系数法求解反比例函数的表达式,根的判别式,熟练掌握根的判别式是解题的关键10、B【分析】根据C=E以及BDE=ADC,可以得到BDEADC,由AD:DE=2:3,AE=10,可以求出AD和DE的值,再利用对应边成比例,即可求出DC的长【

16、详解】解:C=E,BDE=ADCBDEADCAD:DE=2:3,AE=10AD=4,DE=6,解得:DC=故选B【点睛】本题主要考查了相似三角形的判定和性质,熟练找出相似三角形以及列出对应边成比例的式子是解决本题的关键二、填空题(每小题3分,共24分)11、【分析】先求出瓷砖的总数,再求出白色瓷砖的个数,利用概率公式即可得出结论【详解】由图可知,共有5块瓷砖,白色的有3块,所以它停在白色地砖上的概率=考点:概率.12、【分析】根据题意可以得出三角形ACD是等边三角形,进而求出AOD,再根据直角三角形求出OE、AD,从而从扇形的面积减去三角形AOD的面积即可得出阴影部分的面积【详解】解:连接AC

17、,OD,过点O作OEAD,垂足为E,ABCAOC,AOC2ADC,ABC+ADC180,ABC120,ADC60,ADCD,ACD是正三角形,AOD120,OE2cos601,AD2sin6022,S阴影部分S扇形OADSAOD2221,故答案为:【点睛】本题主要考察扇形的面积和三角形的面积,熟练掌握面积公式及计算法则是解题关键.13、15【解析】试题分析:由三视图可知这个几何体是母线长为5,高为4的圆锥,a=2=6,底面半径为3,侧面积为:53=15考点:1三视图;2圆锥的侧面积14、3【解析】作ADBC于D点,根据等腰三角形的性质得到BD12BC【详解】解:如图,作ADBC于D点,ABAC

18、4,BC6,BD12BC在RtABD中,cosBBDAB3故答案为34【点睛】本题考查了锐角三角函数的定义:在直角三角形中,一锐角的余弦值等于这个角的邻边与斜边的比也考查了等腰三角形的性质15、1【分析】先求得方程的两根,根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可【详解】解方程x2-14x+48=0得第三边的边长为6或8,依据三角形三边关系,不难判定边长2,6,9不能构成三角形,2,8,9能构成三角形,三角形的周长=2+8+9=1【点睛】本题考查三角形的周长和解一元二次方程,解题的关键是检验三边长能否成三角形16、【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因

19、式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式因此,先提取公因式后继续应用平方差公式分解即可:考点:提公因式法和应用公式法因式分解17、1.1【分析】证明OCDOAB,然后利用相似比计算出CD即可【详解】解:OB=5m,OD=3m,AB=1cm,CDAB,OCDOAB,即,CD=1.1,即对应位置的E的高CD为1.1cm故答案为1.1【点睛】本题考查了相似三角形的应用:常常构造“A”型或“X”型相似图,利用三角形相似的性质求相应线段的长18、x13,x21【分析】利用因式分解法求解可得【详解】解:(x1)(x3)0,x10或x30,解得

20、x13,x21,故答案为:x13,x21【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键三、解答题(共66分)19、(1) ;(2)从4月份起扭亏为盈; 9月份一个月利润为11万元 ;(3)12,17万元.【分析】(1)根据题意此抛物线的顶点坐标为,设出抛物线的顶点式,把代入即可求出的值,把的值代入抛物线的顶点式中即可确定出抛物线的解析式;(2)由图可解答;求8、9两个月份的总利润的差即为9月的利润;(3)根据前个月内所获得的利润减去前个月内所获得的利润,即可表示出第个月内所

21、获得的利润,为关于的一次函数,且为增函数,得到取最大为12时,把代入即可求出最多的利润【详解】(1)根据题意可设:,点在抛物线上,解得:,即 ;(2),对称轴为直线,当时y随x的增大而增大,从4月份起扭亏为盈;8月份前的总利润为:万元,9月份前的总利润为:万元,9月份一个月利润为:万元;(3)设单月利润为W万元,依题意得:,整理得:, W随增大而增大,当x12时,利润最大,最大利润为17万元【点睛】本题考查了二次函数的应用,主要考查学生会利用待定系数法求函数的解析式,灵活运用二次函数的图象与性质解决实际问题,认真审题很重要20、(1)0.1,1;(2)4.78元【分析】(1)根据图形即可得出柑

22、橘损坏的概率,再求出柑橘完好的概率,用柑橘完好的概率乘以这批柑橘的总质量可得出这批柑橘完好的质量;(2)先设出每千克柑橘大约定价为x元比较合适,根据题意列出方程即可求出答案【详解】(1)根据所给的图可得:柑橘损坏的概率估计值为:0.1,柑橘完好的概率估计值为1-0.1=0.9;这批柑橘完好的质量为:100000.9=1(千克),故答案为:0.1,1(2)设每千克柑橘大约定价为x元比较合适,根据题意得:(x-2)1=25000,解得:x4.78答:每千克柑橘大约定价为4.78元比较合适【点睛】此题考查了利用频率估计概率,解题的关键是在图中得到必要的信息,求出柑橘损坏的概率;用到的知识点为:频率=

23、所求情况数与总情况数之比21、(1)见解析;(2)1【解析】试题分析:(1)连接OD,则有1=2,而2=3,得到1=3,因此ODBC,又由于C=90,所以ODAD,即可得出结论(2)根据ODAD,则在RTOAD中,OA2=OD2+AD2,设半径为r,AD=15,AE=9,得到(r+9)2=152+r2,解方程即可(1)证明:连接OD,如图所示:OD=OB,1=2,又BD平分ABC,2=3,1=3,ODBC,而C=90,ODAD,AC与O相切于D点;(2)解:ODAD,在RTOAD中,OA2=OD2+AD2,又AD=15,AE=9,设半径为r,(r+9)2=152+r2,解方程得,r=1,即O的

24、半径为1考点:切线的判定22、(1)y=-2x+100;(2)35元或45元;(3)W=-2x2+160 x-3000,40元时利润最大【解析】试题分析:(1)设一次函数解析式,将表格中任意两组x,y值代入解出k,b,即可求出该解析式;(2)利润等于单件利润乘以销售量,而单件利润又等于每件商品的销售价减去进价,从而建立每件商品的销售价与利润的一元二次方程求解;(3)将w替换上题中的150元,建立w与x的二次函数,化成一般式,看二次项系数,讨论x取值,从而确定每件商品销售价定为多少元时利润最大试题解析:(1)设该函数的表达式为y=kx+b(k0),根据题意,得,解得,该函数的表达式为y=-2x+

25、100;(2)根据题意得:(-2x+100)(x-30)=150 ,解这个方程得,x1=35,x2=45每件商品的销售价定为35元或45元时日利润为150元(3)根据题意得:w=(-2x+100)(x-30)=-2x2+160 x-3000=-2(x-40)2+200,a=-20,则抛物线开口向下,函数有最大值,即当x=40时,w的值最大,当销售单价为40元时获得利润最大考点:一次函数与二次函数的实际应用23、(1);(2)存在,当的周长最小时,点的坐标为【分析】(1)直接利用待定系数求出二次函数解析式即可;(2)首先求出直线BC的解析式,再利用轴对称求最短路线的方法得出答案.【详解】(1)抛

26、物线与轴交于两点解得:该抛物线的解析式为(2)该抛物线的对称轴上存在点,使得的周长最小如解图所示,作点关于抛物线对称轴的对称点,连接,交对称轴于点,连接,点关于抛物线对称轴的对称点,且,交对称轴于点,的周长为,为抛物线对称轴上一点,的周长,当点处在解图位置时,的周长最小在中,当时,抛物线的对称轴为直线,点是点关于抛物线对称轴直线的对称点,且设过点两点的直线的解析式为:,在直线上,解得:,直线的解析式为:,抛物线对称轴为直线,且直线与抛物线对称轴交于点,在中,当时,在该抛物线的对称轴上存在点,使得的周长最小,当的周长最小时,点的坐标为【点睛】此题主要考查了二次函数综合应用以及待定系数法求一次函数

27、、二次函数解析式等知识,能正确理解题意是解题关键24、(1)答案为;(2)v=30时,q达到最大值,q的最大值为1;(3)84k2【分析】(1)根据一次函数,反比例函数和二次函数的性质,结合表格数据,即可得到答案;(2)把二次函数进行配方,即可得到答案;(3)把v=12, v=18,分别代入二次函数解析式,求出q的值,进而求出对应的k值,即可得到答案【详解】(1),q随v的增大而增大,不符合表格数据,q随v的增大而减小,不符合表格数据,当q30时,q随v的增大而增大,q30时,q随v的增大而减小,基本符合表格数据,故答案为:;(2)q=2v2+120v=2(v30)2+1,且20, 当v=30时,q达到最大值,q的最大值为1答:当该路段的车流速度为30千米/小时,流量达到最大,最大流量是1辆/小时(3)当v=12时,q=2122+12012=1152,此时k=115212=2,当v=18时,q=2182+12018=1512,此时k=151218=84,84k2答:当84k2时,该路段将出现轻度拥堵【点睛】本

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论