版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1若抛物线yx2+bx+c与x轴只有一个公共点,且过点A(m,n),B(m8,n),则n的值为()A8B12C15D162已知函数yax2+bx+c的图象如图所示,则关于x的方程ax2+bx+c40的根的情况是( )A有两个相等的实数根B有两个异号的实数根C有两个不相等的实数根D没有实数根3已知二次函数,当
2、自变量取时,其相应的函数值小于0,则下列结论正确的是( )A取时的函数值小于0B取时的函数值大于0C取时的函数值等于0D取时函数值与0的大小关系不确定4已知点(4,y1)、(4,y2)都在函数yx24x+5的图象上,则y1、y2的大小关系为()Ay1y2By1y2Cy1y2D无法确定5一个高为3 cm的圆锥的底面周长为8 cm,则这个圆锥的母线长度为( )A3 cmB4 cmC5 cmD5 cm6若双曲线经过第二、四象限,则直线经过的象限是( )A第一、二、三象限B第一、二、四象限C第一、三、四象限D第二、三、四象限7已知x1,x2是一元二次方程的两根,则x1x2的值是( )A0B2C2D48
3、如图,丁轩同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他向前再步行20m到达Q点时,发现身前他影子的顶部刚好接触到路灯BD的底部,已知丁轩同学的身高是1.5m,两个路灯的高度都是9m,则两路灯之间的距离是()A24mB25mC28mD30m9在,则的值是( )ABCD10我国古代数学名著九章算术有“米谷粒分”题:粮仓开仓收粮,有人送来谷米1534石,验得其中夹有谷粒现从中抽取谷米一把,共数得254粒,其中夹有谷粒28粒,则这批谷米内夹有谷粒约是( )A134石B169石C338石D1365石二、填空题(每小题3分,共24分)11如图,点在函
4、数的图象上, 都是等腰直角三角形.斜边都在轴上(是大于或等于2的正整数),点的坐标是_12连接三角形各边中点所得的三角形面积与原三角形面积之比为: 13如图,在ABCD中,点E在DC边上,若,则的值为_14已知二次函数y=x22mx(m为常数),当1x2时,函数值y的最小值为2,则m的值是_15在平面直角坐标系中,与位似,位似中心为原点,点与点是对应顶点,且点A,点的坐标分别是,那么与的相似比为_16如图,若菱形ABCD的边长为2cm,A120,将菱形ABCD折叠,使点A恰好落在菱形对角线的交点O处,折痕为EF,则EF_cm,17由4m7n,可得比例式_.18把函数y2x2的图象先向右平移3个
5、单位长度,再向下平移2个单位长度得到新函数的图象,则新函数的表达式是_三、解答题(共66分)19(10分)四张质地相同的卡片如图所示将卡片洗匀后,背面朝上放置在桌面上(1)求随机抽取一张卡片,恰好得到数字2的概率;(2)小贝和小晶想用以上四张卡片做游戏,游戏规则见信息图你认为这个游戏公平吗?请用列表法或画树状图法说明理由,若认为不公平,请你修改规则,使游戏变得公平20(6分)(1)计算: (2)用适当方法解方程:(3)用配方法解方程:21(6分)如图是二次函数y=(x+m)2+k的图象,其顶点坐标为M(1,4)(1)求出图象与x轴的交点A、B的坐标;(2)在二次函数的图象上是否存在点P,使SP
6、AB=SMAB?若存在,求出点P的坐标;若不存在,请说明理由22(8分)图1和图2中的正方形ABCD和四边形AEFG都是正方形(1)如图1,连接DE,BG,M为线段BG的中点,连接AM,探究AM与DE的数量关系和位置关系,并证明你的结论;(2)在图1的基础上,将正方形AEFG绕点A逆时针方向旋转到图2的位置,连结DE、BG,M为线段BG的中点,连结AM,探究AM与DE的数量关系和位置关系,并证明你的结论23(8分)如图,在平面直角坐标系中,的顶点坐标分别为(每个方格的边长均为个单位长度).(1)将以点为旋转中心,逆时针旋转度得到,请画出;(2)请以点为位似中心,画出的位似三角形,使相似比为.2
7、4(8分)如图,已知四边形ABCD是平行四边形(1)尺规作图:按下列要求完成作图;(保留作图痕迹,请标注字母)连AC;作AC的垂直平分线交BC、AD于E、F;连接AE、CF;(2)判断四边形AECF的形状,并说明理由25(10分)如图,AB为O直径,点D为AB下方O上一点,点C为弧ABD中点,连接CD,CA(1)若ABD,求BDC(用表示);(2)过点C作CEAB于H,交AD于E,CAD,求ACE(用表示);(3)在(2)的条件下,若OH5,AD24,求线段DE的长26(10分)如图,在ABC中,AB=AC,CD是AB边上的中线,延长AB到点E,使BE=AB,连接CE求证:CD= CE参考答案
8、一、选择题(每小题3分,共30分)1、D【分析】由题意b24c0,得b24c,又抛物线过点A(m,n),B(m8,n),可知A、B关于直线x对称,所以A(+4,n),B(4,n),把点A坐标代入yx2+bx+c,化简整理即可解决问题【详解】解:由题意b24c0,b24c,又抛物线过点A(m,n),B(m8,n),A、B关于直线x对称,A(+4,n),B(4,n),把点A坐标代入yx2+bx+c,n(+4)2+b(+4)+cb2+1+c,b24c,n1故选:D【点睛】本题考查二次函数的性质,关键在于熟悉性质,灵活运用.2、A【分析】根据抛物线的顶点坐标的纵坐标为4,判断方程ax2+bx+c40的
9、根的情况即是判断函数yax2+bx+c的图象与直线y4交点的情况【详解】函数的顶点的纵坐标为4,直线y4与抛物线只有一个交点,方程ax2+bx+c40有两个相等的实数根,故选A【点睛】本题考查了二次函数与一元二次方程,熟练掌握一元二次方程与二次函数间的关系是解题的关键.3、B【分析】画出函数图象,利用图象法解决问题即可;【详解】由题意,函数的图象为:抛物线的对称轴x=,设抛物线与x轴交于点A、B,AB1,x取m时,其相应的函数值小于0,观察图象可知,x=m-1在点A的左侧,x=m-1时,y0,故选B【点睛】本题考查二次函数图象上的点的坐标特征,解题的关键是学会利用函数图象解决问题,体现了数形结
10、合的思想4、B【分析】首先根据二次函数解析式确定抛物线的对称轴为x2,再根据抛物线的增减性以及对称性可得y1,y2的大小关系【详解】解:二次函数yx24x+5(x2)2+1,对称轴为x2,a0,x2时,y随x增大而增大,点(4,y1)关于抛物线的对称轴x2对称的点是(8,y1),84,y1y2,故选:B【点睛】本题主要考查的是二次函数的增减性,从对称轴分开,二次函数左右两边的增减性不相同结合题意即可解出此题.5、C【分析】由底面圆的周长公式算出底面半径,圆锥的正视图是以母线长为腰,底面圆直径为底的等腰三角形,高、底面半径和母线长三边构成直角三角形,再用勾股定理算出母线长即可【详解】解:由圆的周
11、长公式得 =4由勾股定理 =5故选:C【点睛】本题考查了圆锥的周长公式,圆锥的正视图勾股定理等知识点6、C【分析】根据反比例函数的性质得出k10,再由一次函数的性质判断函数所经过的象限【详解】双曲线y经过第二、四象限,k10,则直线y=2x+k1一定经过一、三、四象限故选:C【点睛】本题考查了一次函数和反比例函数的性质,属于函数的基础知识,难度不大7、B【解析】x1,x1是一元二次方程的两根,x1+x1=1故选B8、D【解析】由题意可得:EPBD,所以AEPADB,所以,因为EP=1.5,BD=9,所以,解得:AP=5,因为AP=BQ,PQ=20,所以AB=AP+BQ+PQ=5+5+20=30
12、,故选D.点睛:本题主要考查相似三角形的对应边成比例在解决实际问题中的应用,应用相似三角形可以间接地计算一些不易直接测量的物体的高度和宽度,解题时关键是找出相似三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.9、B【分析】根据互余两角三角函数的关系:sin2A+sin2B=1解答【详解】在RtABC中,C=90,A+B=90,sin2A+sin2B=1,sinA0,sinB=,sinA=.故选B.【点睛】本题考查互余两角三角函数的关系.10、B【解析】根据254粒内夹谷28粒,可得比例,再乘以1534石,即可得出答案【详解】解:根据题意得: 1534169(石),答:这批谷
13、米内夹有谷粒约169石;故选B【点睛】本题考查了用样本估计总体,用样本估计总体是统计的基本思想,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确二、填空题(每小题3分,共24分)11、【分析】过点P1作P1Ex轴于点E,过点P2作P2Fx轴于点F,过点P3作P3Gx轴于点G,根据P1OA1,P2A1A2,P3A2A3都是等腰直角三角形,可求出P1,P2,P3的坐标,从而总结出一般规律得出点Pn的坐标【详解】解:过点P1作P1Ex轴于点E,过点P2作P2Fx轴于点F,过点P3作P3Gx轴于点G,P1OA1是等腰直角三角形,P1E=OE=A1E=OA1,设点P1
14、的坐标为(a,a),(a0),将点P1(a,a)代入,可得a=1,故点P1的坐标为(1,1),则OA1=2,设点P2的坐标为(b+2,b),将点P2(b+2,b)代入,可得b=,故点P2的坐标为(,),则A1F=A2F=,OA2=OA1+A1A2=,设点P3的坐标为(c+,c),将点P3(c+,c)代入,可得c=,故点P3的坐标为(,),综上可得:P1的坐标为(1,1),P2的坐标为(,),P3的坐标为(,),总结规律可得:Pn坐标为;故答案为:.【点睛】本题考查了反比例函数的综合,根据等腰三角形的性质结合反比例函数解析式求出P1,P2,P3的坐标,从而总结出一般规律是解题的关键.12、1:1
15、【分析】证出DE、EF、DF是ABC的中位线,由三角形中位线定理得出,证出DEFCBA,由相似三角形的面积比等于相似比的平方即可得出结果【详解】解:如图所示:D、E、F分别AB、AC、BC的中点,DE、EF、DF是ABC的中位线,DE=BC,EF=AB,DF=AC,DEFCBA,DEF的面积:CBA的面积=()2=故答案为1:1考点:三角形中位线定理13、【分析】由DE、EC的比例关系式,可求出EC、DC的比例关系;由于平行四边形的对边相等,即可得出EC、AB的比例关系,易证得,可根据相似三角形的对应边成比例求出BF、EF的比例关系【详解】解:,;四边形ABCD是平行四边形,;, 故答案为:【
16、点睛】此题主要考查了平行四边形的性质以及相似三角形的判定和性质灵活利用相似三角形性质转化线段比是解题关键14、1.5或2【解析】将二次函数配方成顶点式,分m-1、m2和-1m2三种情况,根据y的最小值为-2,结合二次函数的性质求解可得【详解】y=x2-2mx=(x-m)2-m2,若m-1,当x=-1时,y=1+2m=-2,解得:m=-32=-1.5;若m2,当x=2时,y=4-4m=-2,解得:m=322(舍);若-1m2,当x=m时,y=-m2=-2,解得:m=2或m=-2-1(舍),m的值为-1.5或2,故答案为:1.5或【点睛】本题考查了二次函数的最值,根据二次函数的增减性分类讨论是解题
17、的关键15、2【分析】分别求出OA和OA1的长度即可得出答案.【详解】根据题意可得,所以相似比=,故答案为2.【点睛】本题考查的是位似,属于基础图形,位似图形上任意一对对应点到位似中心的距离之比等于相似比.16、【分析】连接AC、BD,根据题意得出E、F分别为AB、AD的中点,EF是ABD的中位线,得出EFBD,再由已知条件根据三角函数求出OB,即可求出EF.【详解】解:连接AC、BD,如图所示:四边形ABCD是菱形,ACBD,将菱形ABCD折叠,使点A恰好落在菱形对角线的交点O处,折痕为EF,AEEO,AFOF,E、F分别为AB、AD的中点,EF是ABD的中位线,EFBD,菱形ABCD的边长
18、为2cm,A120,AB2cm,ABC60,OBBD,ABO30,OBABcos302,EFBDOB;故答案为:.【点睛】此题考查菱形的性质,折叠的性质,锐角三角函数,三角形中位线的判定及性质,由折叠得到EF是ABD的中位线,由此利用锐角三角函数求出OB的长度达到解决问题的目的.17、【分析】根据比例的基本性质,将原式进行变形,即等积式化比例式后即可得.【详解】解:4m7n,.故答案为:【点睛】本题考查比例的基本性质,将比例进行变形是解答此题的关键.18、y1(x3)11【分析】利用二次函数平移规律即可求出结论【详解】解:由函数y1x1的图象先向右平移3个单位长度,再向下平移1个单位长度得到新
19、函数的图象,得新函数的表达式是y1(x3)11,故答案为y1(x3)11【点睛】本题主要考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键三、解答题(共66分)19、解:(1)P(抽到2)= (2)不公平,修改规则见解析【详解】解:(1)P(抽到2)= (2)根据题意可列表2236222222326222222326332323336662626366从表(或树状图)中可以看出所有可能结果共有16种,符合条件的有10种,P(两位数不超过32)= 游戏不公平调整规则:法一:将游戏规则中的32换成2631(包括26和31)之间的任何一个数都能使游戏公平法二:游戏规则
20、改为:抽到的两位数不超过32的得3分,抽到的两位数不超过32的得5分;能使游戏公平法三:游戏规则改为:组成的两位数中,若个位数字是2,小贝胜,反之小晶胜20、(1)3;(2) x1=,x2=;(3) x11+,x21【解析】(1)先根据特殊角的三角函数值、二次根式的性质、零指数幂和绝对值的意义逐项化简,再合并同类二次根式或同类项即可;(2)用直接开平方法求解即可;(3)先把-3移项,再把二次项系数化为1,两边都加1,把左边写成完全平方的形式,两边同时开平方即可.【详解】解:(1)原式=4-2 +1+2 =3;(2)(2x-5)2= ,2x-5= ,所以x1=,x2= ;(3) 解:2x2-4x
21、-3=0,2x2-4x=3,x22x,x22x+1+1,(x1)2,x-1=,x11+,x21【点睛】本题考查了实数的混合运算,一元二次方程的解法,熟练掌握二次方程的解法是解答本题的关键.21、(1)A(1,0),B(3,0);(2)存在合适的点P,坐标为(4,5)或(2,5)【解析】试题分析:(1)由二次函数y=(x+m)2+k的顶点坐标为M(1,4)可得解析式为:,解方程:可得点A、B的坐标;(2)设点P的纵坐标为,由PAB与MAB同底,且SPAB=SMAB,可得:,从而可得=,结合点P在抛物线的图象上,可得=5,由此得到:,解方程即可得到点P的坐标.试题解析:(1)抛物线解析式为y=(x
22、+m)2+k的顶点为M(1,4),当y=0时,(x1)24=0,解得x1=3,x2=1,A(1,0),B(3,0);(2)PAB与MAB同底,且SPAB=SMAB,即=,又点P在y=(x1)24的图象上,yP4,=5,则,解得:,存在合适的点P,坐标为(4,5)或(2,5)22、(1)AM=DE,AMDE,理由详见解析;(2)AM=DE,AMDE,理由详见解析.【解析】试题分析:(1)AM=DE,AMDE,理由是:先证明DAEBAG,得DE=BG,AED=AGB,再根据直角三角形斜边的中线的性质得AM=BG,AM=BM,则AM=DE,由角的关系得MAB+AED=90,所以AOE=90,即AMD
23、E;(2)AM=DE,AMDE,理由是:作辅助线构建全等三角形,证明MNGMAB和AGNEAD可以得出结论试题解析:(1)AM=DE,AMDE,理由是:如图1,设AM交DE于点O,四边形ABCD和四边形AEFG都是正方形,AG=AE,AD=AB,DAE=BAG,DAEBAG,DE=BG,AED=AGB,在RtABG中,M为线段BG的中点,AM=BG,AM=BM,AM=DE,AM=BM,MBA=MAB,AGB+MBA=90,MAB+AED=90,AOE=90,即AMDE;(2)AM=DE,AMDE,理由是:如图2,延长AM到N,使MN=AM,连接NG,MN=AM,MG=BM,NMG=BMA,MN
24、GMAB,NG=AB,N=BAN,由(1)得:AB=AD,NG=AD,BAN+DAN=90,N+DAN=90,NGAD,AGN+DAG=90,DAG+DAE=EAG=90,AGN=DAE,NG=AD,AG=AE,AGNEAD,AN=DE,N=ADE,N+DAN=90,ADE+DAN=90,AMDE考点:旋转的性质;正方形的性质23、(1)见详解;(2)见详解.【分析】(1)根据旋转的规律,将点A、B围绕O逆时针旋转90,得到A1、B1,连接O、A1、B1即可;(2)连接OA并延长到A2,使OA2=2OA,连接OB并延长到B2,使OB2=2OB,然后顺次连接O、A2、B2即可;【详解】解:(1)
25、如图,OA1B1即为所求作三角形;(2)如图,OA2B2即为所求作三角形;【点睛】本题考查了利用位似变换作图,坐标位置的确定,熟练掌握网格结构以及平面直角坐标系的知识是解题的关键24、(1)作图见解析;(2)四边形AECF为菱形,理由见解析.【解析】(1)按要求连接AC,分别以A,C为圆心,以大于AC长为半径画弧,弧在AC两侧的交点分别为P,Q,作直线PQ,PQ分别与BC,AC,AD交于点E,O,F,连接AE、CF即可;(2)根据所作的是线段的垂直平分线结合平行四边形的性质,证明OAFOCE,继而得到OE=OF,从而得AC与EF互相垂直平分,根据对角线互相垂直平分的四边形是菱形即可得.【详解】(1)如图,AE、CF为所作;(2)四边形AECF为菱形,理由如下:EF垂直平分AC,OA=OC,EFAC,四边形ABCD为平行四边形,AFCE,OAF=OCE,OFA=OEC,OAFOCE,OE=OF,AC与EF互相平分,四边形AECF是平行四边形,又EFAC,平行四边形AECF为菱形【点睛】本题考查了平行四边形的性质,全等三角形的判定与性质,段垂直平分线的性质,菱形的判定等,掌握尺规作图的方法,作图中的条件就是第二问中的已知条件,正确进行尺规作图是解题的关键25、(1)BDC=;(2)ACE=;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 惯性的课件 教学课件
- 2025年金华义乌市卫生健康系统面向毕业生校园招聘293人笔试备考题库及答案解析
- 维修保养服务合同(2篇)
- 南京工业大学浦江学院《食品科学与工程导论》2021-2022学年第一学期期末试卷
- 【初中化学】能源的合理利用与开发单元复习题-2024-2025学年九年级化学人教版(2024)上册
- 柳州市环境综合治理项目(二期)三江县污水处理厂污水收集系管线改造工程施工组织设计
- 新建府谷煤炭铁路专用线工程三标段王家沟双线大桥实施性施工组织设计
- 南京工业大学浦江学院《界面设计》2021-2022学年第一学期期末试卷
- 《小小的船》说课稿
- 中学语文教学反思2
- 养老院膳食营养保障方案
- 陕西省汉中市勉县第二中学2024-2025学年高二上学期11月期中考试政治试题
- 2024年中国酱香型习酒市场调查研究报告
- 河北省邢台市2023-2024学年八年级上学期期中数学试题(解析版)
- 安全生产治本攻坚三年行动方案(2024-2026)
- Unit 3 Toys Lesson 1(教学设计)-2024-2025学年人教精通版(2024)英语三年级上册
- 2024年秋初中物理八年级上册教学设计(教案)第5节 跨学科实践:制作望远镜
- 分级阅读The Fantastic Washing Machine 洗衣机超人 教学设计-2023-2024学年牛津译林版英语七年级下册
- 文学阅读与创意表达任务群下的教学设计六上第四单元
- 2024交通银行借贷合同范本
- 六年级语文上册18.《书湖阴先生壁》课件
评论
0/150
提交评论