版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1如图所示,是二次函数y=ax2bx+2的大致图象,则函数y=ax+b的图象不经过()A第一象限B第二象限C第三象限D第四象限2下表是一组二次函数的自变量x与函数值y的对应值:11.11.21.31.4-1-0.490.040.591.16那么方
2、程的一个近似根是( )A1B1.1C1.2D1.33若点 A、B、C 都在二次函数的图象上,则的大小关系为( )ABCD4对于二次函数y(x1)23,下列结论:其图象开口向下;其图象的对称轴为直线x1;其图象的顶点坐标为(1,3);当x1时,y随x的增大而减小其中正确结论的个数为()A1B2C3D45一元二次方程的解为( )AB ,C ,D,6我们研究过的图形中,圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了圆以外,还有一些几何图形也是“等宽曲线”,如勒洛三角形(如图),它是分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧,三段圆弧围成的曲边三角形.
3、图是等宽的勒洛三角形和圆形滚木的截面图. 图 图有如下四个结论:勒洛三角形是中心对称图形图中,点到上任意一点的距离都相等图中,勒洛三角形的周长与圆的周长相等使用截面是勒洛三角形的滚木来搬运东西,会发生上下抖动上述结论中,所有正确结论的序号是( )ABCD7如图所示,给出下列条件:;,其中单独能够判定的个数为( )ABCD8如图,正比例函数的图像与反比例函数的图象相交于A、B两点,其中点A的横坐标为2,当时,x的取值范围是( )Ax-2或x2Bx-2或0 x2C-2x0或0 x2D-2x0或x29已知二次函数()的图象如图所示,有下列结论:;.其中,正确结论的个数是( )A1B2C3D410若函
4、数其几对对应值如下表,则方程(,为常数)根的个数为()A0B1C2D1或211如图,、分别与相切于、两点,点为上一点,连接,若,则的度数为( )ABCD12若一组数据为3,5,4,5,6,则这组数据的众数是( )A3B4C5D6二、填空题(每题4分,共24分)13若,且,则=_.14如图,已知公路L上A,B两点之间的距离为100米,小明要测量点C与河对岸的公路L的距离,在A处测得点C在北偏东60方向,在B处测得点C在北偏东30方向,则点C到公路L的距离CD为_米15一元二次方程的根的判别式的值为_.16如图,等腰直角三角形AOC中,点C在y轴的正半轴上,OCAC4,AC交反比例函数y的图象于点
5、F,过点F作FDOA,交OA与点E,交反比例函数与另一点D,则点D的坐标为_17用半径为3cm,圆心角是120的扇形围成一个圆锥的侧面,则这个圆锥的底面半径等于_cm18如图,有一张直径(BC)为1.2米的圆桌,其高度为0.8米,同时有一盏灯A距地面2米,圆桌的影子是DE,AD和AE是光线,建立图示的平面直角坐标系,其中点D的坐标是(2,0)那么点E的坐标是_三、解答题(共78分)19(8分)某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”三个等级,并根据调查结果绘制了如下两幅不完整的统计图(1)这
6、次调查的市民人数为_人,m_,n_;(2)补全条形统计图;(3)若该市约有市民100000人,请你根据抽样调查的结果,估计该市大约有多少人对“社会主义核心价值观”达到“A.非常了解”的程度20(8分)如图,在ABC中,ACBC,ABC30,点D是CB延长线上一点,且BDBA,求tanADC的值21(8分)某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如下:命中环数678910甲命中相应环数的次数01310乙命中相应环数的次数20021(1)根据上述信息可知:甲命中环数的中位数是_环,乙命中环数的众数是_环;(2)试通过计算说明甲、乙两人
7、的成绩谁比较稳定?(3)如果乙再射击1次,命中8环,那么乙射击成绩的方差会变小(填“变大”、“变小”或“不变”)22(10分)如图,某农场准备围建一个中间隔有一道篱笆的矩形花圃,现有长为米的篱笆,一边靠墙,若墙长米,设花圃的一边为米;面积为平方米(1)求与的函数关系式及值的取值范围;(2)若边不小于米,这个花圃的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由23(10分)如图,在ABC中,AB=AC(1)若以点A为圆心的圆与边BC相切于点D,请在下图中作出点D;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,若该圆与边AC相交于点E,连接DE,当BA
8、C=100时,求AED的度数.24(10分)如图,已知:的长等于_;若将向右平移个单位得到,则点的对应点的坐标是_;若将绕点按顺时针方向旋转后得到,则点对应点的坐标是_25(12分)如图,O的直径为AB,点C在O上,点D,E分别在AB,AC的延长线上,DEAE,垂足为E,ACDE(1)求证:CD是O的切线;(2)若AB4,BD3,求CD的长26如图,O是ABC的外接圆,PA是O切线,PC交O于点D(1)求证:PACABC;(2)若BAC2ACB,BCD90,AB,CD2,求O的半径参考答案一、选择题(每题4分,共48分)1、A【解析】解:二次函数y=ax2bx+2的图象开口向上,a0;对称轴x
9、=0,b0;因此a0,b0综上所述,函数y=ax+b的图象过二、三、四象限即函数y=ax+b的图象不经过第一象限故选A2、C【详解】解:观察表格得:方程x2+3x5=0的一个近似根为1.2,故选C考点:图象法求一元二次方程的近似根3、D【分析】根据反二次函数图象上点的坐标特征比较y1、y2、y3的大小,比较后即可得出结论【详解】解:A()、B(2, )、C ()在二次函数y=+k的图象上,y=+k的对称轴x=1,当x=0与x=2关于x=1对称,A,B在对称轴右侧,y随x的增大而增大,则y2y1,C在对称轴左侧,且 ,则y3y2,y3y2y1,故选:D【点睛】本题考查了二次函数图象上点的坐标特征
10、,利用二次函数图象上点的坐标关于对称轴对称的特征比较y1、y2、y3的大小是解题的关键4、C【解析】由抛物线解析式可确定其开口方向、对称轴、顶点坐标,可判断,再利用增减性可判断,可求得答案【详解】 抛物线开口向上,对称轴为直线x=1,顶点坐标为(1,3),故不正确,正确,抛物线开口向上,且对称轴为x=1,当x1时,y随x的增大而增大,当x1时,y随x的增大而增大,故正确,正确的结论有3个,故选:C.【点睛】考查二次函数的图象与性质,掌握二次函数的开口方向、对称轴、顶点坐标的求解方法是解题的关键.5、C【分析】通过因式分解法解一元二次方程即可得出答案.【详解】或 ,故选C【点睛】本题主要考查解一
11、元二次方程,掌握因式分解法是解题的关键.6、B【分析】逐一对选项进行分析即可.【详解】勒洛三角形不是中心对称图形,故错误;图中,点到上任意一点的距离都相等,故正确;图中,设圆的半径为r勒洛三角形的周长= 圆的周长为勒洛三角形的周长与圆的周长相等,故正确;使用截面是勒洛三角形的滚木来搬运东西,不会发生上下抖动,故错误故选B【点睛】本题主要考查中心对称图形,弧长公式等,掌握中心对称图形和弧长公式是解题的关键.7、B【解析】由已知ABC与ABD中A为公共角,所以只要再找一组角相等,或一组对应边成比例即可解答.【详解】解:,A为公共角,;,A为公共角,;虽然,但A不是已知的比例线段的夹角,所以两个三角
12、形不相似;,又A为公共角,综上,单独能够判定的个数有3个,故选B.【点睛】本题考查了相似三角形的判定,属于基础题目,熟练掌握相似三角形的判定方法是解题的关键.8、D【分析】先根据反比例函数与正比例函数的性质求出B点坐标,再由函数图象即可得出结论【详解】解:反比例函数与正比例函数的图象均关于原点对称,A、B两点关于原点对称,点A的横坐标为1,点B的横坐标为-1,由函数图象可知,当-1x0或x1时函数y1=k1x的图象在的上方,当y1y1时,x的取值范围是-1x0或x1故选:D【点睛】本题考查的是反比例函数与一次函数的交点问题,能根据数形结合求出y1y1时x的取值范围是解答此题的关键9、D【解析】
13、由题意根据函数图象和二次函数的性质可以判断题目中的各个小题的结论是否正确,从而可以解答本题【详解】解:函数图象与x轴有两个交点,故b2-4ac0,所以正确,由图象可得,a0,b0,c0,故abc0,所以正确,当x=-2时,y=4a-2b+c0,故正确,该函数的对称轴为x=1,当x=-1时,y0,当x=3时的函数值与x=-1时的函数值相等,当x=3时,y=9a+3b+c0,故正确,故答案为:故选D.【点睛】本题考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质解答10、C【分析】先根据表格得出二次函数的图象与x轴的交点个数,再根据二次函数与一元二次方程的关系即可得出答案【
14、详解】由表格可得,二次函数的图象与x轴有2个交点则其对应的一元二次方程根的个数为2故选:C【点睛】本题考查了二次函数的图象、二次函数与一元二次方程的关系,掌握理解二次函数的图象特点是解题关键11、C【分析】先利用切线的性质得OAP=OBP=90,再利用四边形的内角和计算出AOB的度数,然后根据圆周角定理计算ACB的度数【详解】解:连接、,、分别与相切于、两点,故选C【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径也考查了圆周角定理12、C【分析】根据众数的定义即可求解【详解】一组数据为3,5,4,5,6中,5出现的次数最多,这组数据的众数为5;故选:C【点睛】本题考查了众数的概念,众
15、数是一组数据中出现次数最多的数,注意一组数据的众数可能不只一个二、填空题(每题4分,共24分)13、12【分析】设,则a=2k,b=3k,c=4k,由求出k值,即可求出c的值.【详解】解:设,则a=2k,b=3k,c=4k,a+b-c3,2k+3k-4k=3,k=3,c=4k=12.故答案为12.【点睛】此题主要考查了比例的性质,利用等比性质是解题关键14、50【分析】作CD直线l,由ACBCAB30,AB50m知ABBC50m,CBD60,根据CDBCsinCBD计算可得【详解】如图,过点C作CD直线l于点D,BCD30,ACD60,ACBCAB30,AB100m,ABBC100m,CBD6
16、0,在RtBCD中,sinCBD,CDBCsinCBD10050(m),故答案是:50【点睛】本题主要考查解直角三角形的应用,解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线15、1.【解析】直接利用根的判别式=b2-4ac求出答案【详解】一元二次方程x2+3x=0根的判别式的值是:=32-410=1故答案为1【点睛】此题主要考查了根的判别式,正确记忆公式是解题关键16、 (4,)【分析】先求得F的坐标,然后根据等腰直角三角形的性质得出直线OA的解析式为y=x,根据反比例函数的对称性得出F关于直线OA的对称点是D点,即可求得D点的坐标【详解】OC=AC
17、=4,AC交反比例函数y=的图象于点F,F的纵坐标为4,代入y=求得x=,F(,4),等腰直角三角形AOC中,AOC=45,直线OA的解析式为y=x,F关于直线OA的对称点是D点,点D的坐标为(4,),故答案为:(4,) 【点睛】本题考查了反比例函数图象上点的坐标特征,等腰直角三角形的性质,反比例函数的对称性是解题的关键17、1【分析】把扇形的弧长和圆锥底面周长作为相等关系,列方程求解【详解】设此圆锥的底面半径为r根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得:2r,解得:r=1故答案为1【点睛】本题考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥
18、底面周长,扇形的半径等于圆锥的母线长18、(4,0)【分析】如图延长CB交y轴于F,由桌面与x轴平行AFBAOD,求FB=1.2,由AFCAOE,可求OE即可【详解】如图,延长CB交y轴于F,桌面与x轴平行即BFOD,AFBAOD,OF=0.8,AF=AO-OF=2-0.8=1.2,OA=OD=2,则AF=FB=1.2,BC =1.2,FC=FB+BC=1.2+1.2=2.4,FCx轴,AFCAOE,=4,E(4,0)故答案为:(4,0)【点睛】本题考查平行线截三角形与原三角形相似,利用相似比来解,关键是延长CB与y轴相交,找到了已知与未知的比例关系从而解决问题三、解答题(共78分)19、 (
19、1)500,12,32;(2)补图见解析;(3)该市大约有32000人对“社会主义核心价值观”达到“A.非常了解”的程度【解析】(1)根据项目B的人数以及百分比,即可得到这次调查的市民人数,据此可得项目A,C的百分比;(2)根据对“社会主义核心价值观”达到“A非常了解”的人数为:32%500=160,补全条形统计图;(3)根据全市总人数乘以A项目所占百分比,即可得到该市对“社会主义核心价值观”达到“A非常了解”的程度的人数【详解】试题分析:试题解析:(1)28056%=500人,60500=12%,156%12%=32%,(2)对“社会主义核心价值观”达到“A非常了解”的人数为:32%500=
20、160,补全条形统计图如下:(3)10000032%=32000(人),答:该市大约有32000人对“社会主义核心价值观”达到“A非常了解”的程度20、2【分析】设ACm,解直角三角形求出AB,BC,BD即可解决问题【详解】设ACm,在RtABC中,C90,ABC30,AB2AC2m,BCACm,BDAB2m,DC2m+m,tanADC【点睛】本题考查求正切值,熟记正切的定义,解出直角三角形的边长是解题的关键21、(1)8, 6和9;(2)甲的成绩比较稳定;(3)变小 【分析】(1)根据众数、中位数的定义求解即可;(2)根据平均数的定义先求出甲和乙的平均数,再根据方差公式求出甲和乙的方差,然后
21、进行比较,即可得出答案;(3)根据方差公式进行求解即可【详解】解:(1)把甲命中环数从小到大排列为7,8,8,8,9,最中间的数是8,则中位数是8;在乙命中环数中,6和9都出现了2次,出现的次数最多,则乙命中环数的众数是6和9;故答案为8,6和9;(2)甲的平均数是:(7+8+8+8+9)5=8,则甲的方差是: (7-8)2+3(8-8)2+(9-8)2=0.4,乙的平均数是:(6+6+9+9+10)5=8,则甲的方差是: 2(6-8)2+2(9-8)2+(10-8)2=2.8,所以甲的成绩比较稳定;(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差变小故答案为变小【点睛】本题考查了方差
22、:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差方差通常用s2来表示,计算公式是:s2=(x1-)2+(x2-)2+(xn-)2;方差是反映一组数据的波动大小的一个量方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好也考查了算术平均数、中位数和众数22、(1);(2)当时,有最大值,最大值是,当时,有最小值,最小值是【分析】(1)根据题意可得S=x(18-3x)=-3x+18x(2)根据和边不小于米,则4x5,在此范围内是减函数,代入求值即可【详解】解:(1),(2),当时,有最大值,最大值是,当时,有最小值,最小值是【点睛】本
23、题考查的是二次函数中的面积问题,注意自变量的取值范围23、(1)详见解析;(2)65.【分析】(1)分析题干可知:作ADBC,由于AB=AC,由等腰三角形的性质可知当AD平分BAC即可满足:以点A为圆心的圆与边BC相切于点D;(2)由AD平分BAC,可得 由圆A半径相等AD=AE,可得ADE=AED,即可得出答案.【详解】解:(1)如图所示,点D为所求(2)如图:AD平分BAC 在中,AD=AE,ADE=AED【点睛】本题考查作图,切线的判定和性质等知识,掌握圆的基本性质是解题的关键.24、; , . 【分析】(1)直接利用勾股定理求出AC的长即可;(2)利用平移的性质得出对应点位置进而得出答案;(3)利用旋转的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医院电梯安全检查方案
- 2024年式酒吧经营承包合同
- 2024年度公司授权代理合同书
- 2024年度定制化建筑用复合板材供应合同
- 2024年康复治疗服务合同
- 2024年建筑泥工劳务供应合同
- 教育行业信息安全管理制度
- 2024国际化教育交流合作项目合同
- 医院内部疫情防控物资协调方案
- 2024年度采购合同:原材料
- 2025年中考数学专题09 逆等线最值专题(原卷版)
- 短视频服务合同范本
- 2024年高考英语模拟试卷3(九省新高考卷) (二)
- 新媒体运营智慧树知到期末考试答案章节答案2024年黑龙江职业学院
- 耳鼻喉科病例讨论模板
- 《道路行驶记录仪检测装置校准规范-公示稿》
- 低分学生提升计划小学数学
- 滑坡泥石流-高中地理省公开课金奖全国赛课一等奖微课获奖
- 人工智能职业生涯规划报告总结
- 主题班队会教学设计
- 供应室停水停电应急预案
评论
0/150
提交评论