江苏省苏州市相城区第三实验中学2023学年九年级数学第一学期期末经典模拟试题含解析_第1页
江苏省苏州市相城区第三实验中学2023学年九年级数学第一学期期末经典模拟试题含解析_第2页
江苏省苏州市相城区第三实验中学2023学年九年级数学第一学期期末经典模拟试题含解析_第3页
江苏省苏州市相城区第三实验中学2023学年九年级数学第一学期期末经典模拟试题含解析_第4页
江苏省苏州市相城区第三实验中学2023学年九年级数学第一学期期末经典模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每题4分,共48分)1商场举行摸奖促销活动,对于“抽到一等奖的概率为0.01”下列说法正确的是( )A抽101次也可能没有抽到一等奖B抽100次奖必有一次抽到一等奖C抽一次不可能抽到一等奖D抽了99次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖2顺次连接四边形ABCD各边的中点,所得四边形是( )A平行四边形B对角线互相垂直的四边形

2、C矩形D菱形3已知二次函数ya(x1)2b(a0)有最小值,则a,b的大小关系为 ( )AabBa0,无论b为何值,此函数均有最小值,a、b大小无法确定4、D【分析】根据中心对称图形的定义:把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,解答即可【详解】解:A、不符合中心对称图形的定义,因此不是中心对称图形,故A选项错误;B、不符合中心对称图形的定义,因此不是中心对称图形,故B选项错误;C、不符合中心对称图形的定义,因此不是中心对称图形,故C选项错误;D、符合中心对称图形的定义,因此是中心对称图形,故D选项正确;故答案选D【点睛】本题考查了中

3、心对称图形的概念,理解中心对称图形的概念是解题关键5、A【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数得出N的坐标,再根据各函数关系式进行判断即可【详解】点M(1,2)关于原点对称的点N的坐标是(-1,-2),当x=-1时,对于选项A,y=2(-1)=-2,满足条件,故选项A正确;对于选项B,y=(-1)2=1-2故选项B错误;对于选项C,y=2(-1)2=2-2故选项C错误;对于选项 D,y=-1+2=1-2故选项D错误故选A【点睛】本题考查了关于原点对称的点的坐标,以及函数图象上点的坐标特征,熟记关于原点对称的点的横坐标与纵坐标都互为相反数是解题的关键6、B【分析】根据题意直接利

4、用圆锥的性质求出圆锥的半径,进而利用勾股定理得出圆锥的高【详解】解:设此圆锥的底面半径为r,由题意得:,解得r=2cm,故这个圆锥的高为:.故选:B.【点睛】本题主要考查圆锥的计算,熟练掌握圆锥的性质并正确得出圆锥的半径是解题关键7、C【分析】首先根据表中的x、y的值确定抛物线的对称轴,然后根据对称性确定m的值即可【详解】解:观察表格发现该二次函数的图象经过点(,)和(,),所以对称轴为x1,点(,m)和(,)关于对称轴对称,m,故选:C【点睛】本题考查了二次函数的图象与性质,解题的关键是通过表格信息确定抛物线的对称轴8、A【分析】作BCx轴于C,如图,根据等边三角形的性质得OA=OB=4,A

5、C=OC=2,BOA=60,则易得A点坐标和O点坐标,再利用勾股定理计算出BC=2,然后根据第二象限点的坐标特征可写出B点坐标;由旋转的性质得AOA=BOB=60,OA=OB=OA=OB,则点A与点B重合,于是可得点A的坐标【详解】解:作BCx轴于C,如图,OAB是边长为4的等边三角形OA=OB=4,AC=OC=1,BOA=60,A点坐标为(-4,0),O点坐标为(0,0),在RtBOC中,BC= ,B点坐标为(-2,2);OAB按顺时针方向旋转60,得到OAB,AOA=BOB=60,OA=OB=OA=OB,点A与点B重合,即点A的坐标为(-2,2),故选:A【点睛】本题考查了坐标与图形变化-

6、旋转:记住关于原点对称的点的坐标特征;图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标常见的是旋转特殊角度如:30,45,60,90,180;解决本题的关键是正确理解题目,按题目的叙述一定要把各点的大致位置确定,正确地作出图形9、A【分析】分类讨论x与y的正负,利用绝对值的代数意义化简,求出方程组的解,即可做出判断【详解】解:根据x、y的正负分4种情况讨论:当x0,y0时,方程组变形得:,无解;当x0,y0时,方程组变形得:,解得x3,y20,则方程组无解;当x0,y0时,方程组变形得:,此时方程组的解为;当x0,y0时,方程组变形得:,无解,综上所述,方程组的解个数是1

7、故选:A【点睛】本题考查了解二元一次方程组,利用了分类讨论的思想,熟练掌握运算法则是解本题的关键10、B【分析】连接OC,根据垂径定理和勾股定理,即可得答案【详解】连接OC,AB是O的直径,弦CDAB于点E,AB=8,AE=1,故选:B【点睛】本题考查了垂径定理和勾股定理,解题关键是学会添加常用辅助线面构造直角三角形解决问题11、D【分析】根据中心对称图形的定义逐一进行分析判断即可.【详解】A、不是中心对称图形,故不符合题意;B、不是中心对称图形,故不符合题意;C、不是中心对称图形,故不符合题意;D、是中心对称图形,故符合题意,故选D.【点睛】本题考查了中心对称图形的识别,熟练掌握中心对称图形

8、的概念是解题的关键.12、B【分析】根据扑克牌的张数,利用概率=频数除以总数即可解题.【详解】解:扑克牌一共有54张,所以抽到“”的概率是,A. 抽到“大王” 的概率是,B. 抽到“2” 的概率是,C. 抽到“小王”的概率是,D. 抽到“红桃”的概率是,故选B.【点睛】本题考查了概率的实际应用,属于简单题,熟悉概率的计算方法是解题关键.二、填空题(每题4分,共24分)13、1【分析】设抛物线的解析式为:y=ax2+b,由图得知点(0,2.4),(1,0)在抛物线上,列方程组得到抛物线的解析式为:y=x2+2.4,根据题意求出y=1.8时x的值,进而求出答案;【详解】设抛物线的解析式为:y=ax

9、2+b,由图得知:点(0,2.4),(1,0)在抛物线上,解得:,抛物线的解析式为:y=x2+2.4,菜农的身高为1.8m,即y=1.8,则1.8=x2+2.4,解得:x=(负值舍去)故他在不弯腰的情况下,横向活动范围是:1米,故答案为114、7【解析】设树的高度为m,由相似可得,解得,所以树的高度为7m15、3【分析】直接将点P(a1,4)代入求出a即可.【详解】直接将点P(a1,4)代入,则,解得a=3.【点睛】本题主要考查反比例函数图象上点的坐标特征,熟练掌握反比例函数知识和计算准确性是解决本题的关键,难度较小.16、12cm【分析】先根据底面半径求出底面周长,即为扇形的弧长,再设出扇形

10、的半径,根据扇形的弧长公式,确定扇形的半径;最后用扇形的面积公式求解即可.【详解】解:底面圆的半径为2cm,底面周长为4cm,侧面展开扇形的弧长为4cm,设扇形的半径为r,圆锥的侧面展开图的圆心角是120,4,解得:r6,侧面积为4612cm,故答案为:12cm【点睛】本题考查了圆锥的表面积、扇形的面积以及弧长公式,解答的关键在于对基础知识的牢固掌握和灵活运用.17、【分析】设正方形的边长为a,再分别计算出正方形与圆的面积,计算出其比值即可【详解】解:设正方形的边长为a,则S正方形=a2,因为圆的半径为,所以S圆=()2=,所以“小鸡正在圆圈内”啄食的概率为:故答案为:【点睛】本题考查几何概率

11、,掌握正方形面积公式正确计算是解题关键18、【分析】原式把变形为,然后逆运用积的乘方进行运算即可得到答案【详解】解:=故答案为:【点睛】此题主要考查了幂的运算,熟练掌握积的乘方运算法则是解答此题的关键三、解答题(共78分)19、(1)且;(2),【分析】(1)根据一元二次方程的定义和判别式的意义得到m0且0,然后求出两个不等式的公共部分即可;(2)利用m的范围可确定m=1,则原方程化为x2+x=0,然后利用因式分解法解方程【详解】(1)解得且(2)为正整数,原方程为解得,【点睛】考查一元二次方程根的判别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.20

12、、(1)50,600;(2)见解析;(3)见解析,【分析】(1)用“非常了解”的人数除以其对应百分比可得总人数,用1减去其他所占的百分比可得“不了解”的学生所占百分比,用2000乘以“不了解”的学生所占百分比即可得“不了解”的学生人数;(2)先求出“不了解”的人数,再补充条形统计图即可;(3)根据题意画出表格,可得一共12种抽取情况,恰好抽到2名男生的情况有2种,再利用概率公式计算即可【详解】解:(1)本次调查的学生总人数为人;“不了解”的学生所占百分比为,估计该校名学生中“不了解”的人数约有(人)(2)30%50=15(人)如下图(3)列表如下,由表可知共有种可能的结果,恰好抽到名男生的结果

13、有个,(恰好抽到名男生)【点睛】本题考查的是条形统计图和扇形统计图的综合运用以及树状图和表格求远概率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键21、探究:见解析;应用:(1)9S1;(2)AN6BN【分析】探究:如图中,过M分别作MEAB交BC于E,MFBC交AB于F,证明MFNMEC(ASA)即可解决问题应用:(1)求出MNC面积的最大值以及最小值即可解决问题(2)利用平行线分线段成比例定理求出AN,BN即可解决问题【详解】解:探究:如图中,过M分别作MEAB交BC于E,MFBC交AB于F,则四边形BEMF是平行四边形,四边形ABCD是正方形,ABC90,ABDCBDBME

14、45,MEBE,平行四边形BEMF是正方形,MEMF,CMMN,CMN90,FME90,CMEFMN,MFNMEC(ASA),MNMC;应用:(1)当点M与D重合时,CNM的面积最大,最大值为1,当DMBM时,CNM的面积最小,最小值为9,综上所述,9S1(2)如图中,由(1)得FMAD,EMCD,ANBC6,AF3.6,CE3.6,MFNMEC,FNEC3.6,AN7.2,BN7.261.2,AN6BN,故答案为AN6BN【点睛】本题是四边形的综合问题,考查了正方形的判定与性质、等腰直角三角形的判定与性质及全等三角形的判定与性质等知识点,解题的关键是学会添加常用辅助线,构造直角三角形解决问题

15、,属于中考压轴题22、()画树状图见解析; ()两次取出的小球标号相同的概率为;()两次取出的小球标号的和大于6的概率为 【分析】()根据题意可画出树状图,由树状图即可求得所有可能的结果()根据树状图,即可求得两次取出的小球标号相同的情况,然后利用概率公式求解即可求得答案()根据树状图,即可求得两次取出的小球标号的和大于6的情况,然后利用概率公式求解即可求得答案【详解】解:()画树状图得:()共有16种等可能的结果,两次取出的小球的标号相同的有4种情况,两次取出的小球标号相同的概率为=;()共有16种等可能的结果,两次取出的小球标号的和大于6的有3种结果,两次取出的小球标号的和大于6的概率为

16、【点睛】此题考查列表法与树状图法求概率的知识此题难度不大,解题的关键是注意列表法与树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比23、 (1)1;(2)-1【分析】(1)根据比例线段的定义得到a:b=c:d,然后把a=2cm,b=3cm,d=6cm代入进行计算即可;(2)设=k,得出a=2k,b=3k,c=1k,代入a+b-5c=15,求出k的值,从而得出c的值【详解】(1)a,b,c,d是成比例线段,即,c=1;(2)设=k,则a=2k,b=3k,c=1k,a+b-5c=152k+3k-20k

17、=15解得:k=-1c=-1【点睛】此题考查比例线段,解题关键是理解比例线段的概念,列出比例式,用到的知识点是比例的基本性质24、详见解析.【分析】连接MA并延长,连接NC并延长,两延长线相交于一点O,点O是路灯所在的点,再连接OE,并延长OE交地面于点G,FG即为所求.【详解】如图所示,FG即为所求.【点睛】本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影如物体在灯光的照射下形成的影子就是中心投影;中心投影的光线特点是从一点出发的投射线25、(3)a=,方程的另一根为;(2)答案见解析.【解析】(3)把x=2代入方程,求出a的值,再把a代入原方程,进一步解方程即可;(2

18、)分两种情况探讨:当a=3时,为一元一次方程;当a3时,利用b24ac3求出a的值,再代入解方程即可【详解】(3)将x2代入方程,得,解得:a将a代入原方程得,解得:x3,x22a,方程的另一根为;(2)当a3时,方程为2x3,解得:x3.当a3时,由b24ac3得44(a3)23,解得:a2或3当a2时, 原方程为:x22x33,解得:x3x23;当a3时, 原方程为:x22x33,解得:x3x23综上所述,当a3,3,2时,方程仅有一个根,分别为3,3,3.考点:3.一元二次方程根的判别式;2.解一元二次方程;3.分类思想的应用.26、(1)y=-2x+1,10 x2;(2)16元/kg;(3)W=-2(x-20)2+200,2元,192元【分析】(1)根据一次函数过(12,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论