




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一
2、并交回。一、选择题(每小题3分,共30分)1若关于x的一元二次方程(k1)x2+2x2=0有两个不相等的实数根,则k的取值范围是()AkBkCk且k1Dk且k12如图,正六边形的边长是1cm,则线段AB和CD之间的距离为( )A2cmB cmC cmD1cm3P(3,-2)关于原点对称的点的坐标是( )A(3,2)B(-3,2)C(-3,-2)D(3,-2)4如图,平行四边形的四个顶点分别在正方形的四条边上.,分别交,于点,且.要求得平行四边形的面积,只需知道一条线段的长度.这条线段可以是( )ABCD5如图,反比例函数和正比例函数的图象交于,两点,已知点坐标为若,则的取值范围是( )ABC或
3、D或6一块蓄电池的电压为定值,使用此蓄电池为电源时,电流I(A)与电阻R()之间的函数关系如图所示,如果以此蓄电池为电源的用电器限制电流不得超过10A,那么此用电器的可变电阻应( )A不小于4.8B不大于4.8C不小于14D不大于147如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上)为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为,则A、B两地之间的距离为()A800sin米B800tan米C米D米8由于受猪瘟的影响,今年9月份猪肉的价格两次大幅上涨,瘦肉价格由原来每千克元,连续两次上涨后,售价上升到每千克元,则下
4、列方程中正确的是( )ABCD9方程是关于x的一元二次方程,则m的值是( )ABCD不存在10如图所示,某宾馆大厅要铺圆环形的地毯,工人师傅只测量了与小圆相切的大圆的弦AB的长,就计算出了圆环的面积,若测量得AB的长为20米,则圆环的面积为( )A10平方米B10平方米C100平方米D100平方米二、填空题(每小题3分,共24分)11已知线段,点是它的黄金分割点,设以为边的正方形的面积为,以为邻边的矩形的面积为,则与的关系是_12如图,平面直角坐标系中,已知O(0,0),A(3,4),B(3,4),将OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90,测第70次旋转结束时,点D的坐
5、标为_13如图,扇形OAB的圆心角为110,C是上一点,则C_14如图,在矩形ABCD中,对角线AC,BD交于点O,点M,N分别为OB,OC的中点,则的面积为_.15若圆锥的母线长为cm,其侧面积,则圆锥底面半径为 cm16圆锥的底面半径是1,侧面积是3,则这个圆锥的侧面展开图的圆心角为_17如图,矩形ABCD中,AB2,BC,F是AB中点,以点A为圆心,AD为半径作弧交AB于点E,以点B为圆心,BF为半径作弧交BC于点G,则图中阴影部分面积的差S1S2为_18已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式,则火箭升空的最大高度是_m三、解答题(共66分)19(
6、10分)如图是由两个长方体组成的几何体,这两个长方体的底面都是正方形,画出图中几何体的主视图、左视图和俯视图.20(6分)已知在平面直角坐标中,点A(m,n)在第一象限内,ABOA且ABOA,反比例函数y的图象经过点A,(1)当点B的坐标为(4,0)时(如图1),求这个反比例函数的解析式;(2)当点B在反比例函数y的图象上,且在点A的右侧时(如图2),用含字母m,n的代数式表示点B的坐标;(3)在第(2)小题的条件下,求的值21(6分)如图1,内接于,AD是直径,的平分线交BD于H,交于点C,连接DC并延长,交AB的延长线于点E. (1)求证:;(2)若,求的值(3)如图2,连接CB并延长,交
7、DA的延长线于点F,若,求的面积.22(8分)如图,在平行四边形中,(1)求与的周长之比;(2)若求23(8分)如图所示,在RtABC中,点O在斜边AB上,以O为圆心,OB为半径作圆O,分别与BC、AB相交于点D、E,连接AD,已知CADB(1)求证:AD是O的切线;(2)若B30,CD,求劣弧BD的长;(3)若AC2,BD3,求AE的长24(8分)如图,D、E分别是半径OA和OB的中点,求证:CDCE25(10分)对于代数式ax2+bx+c,若存在实数n,当xn时,代数式的值也等于n,则称n为这个代数式的不变值例如:对于代数式x2,当x1时,代数式等于1;当x1时,代数式等于1,我们就称1和
8、1都是这个代数式的不变值在代数式存在不变值时,该代数式的最大不变值与最小不变值的差记作A特别地,当代数式只有一个不变值时,则A1(1)代数式x22的不变值是 ,A (2)说明代数式3x2+1没有不变值;(3)已知代数式x2bx+1,若A1,求b的值26(10分)如图,在平面直角坐标系中,二次函数交轴于点、,交轴于点,在轴上有一点,连接. (1)求二次函数的表达式;(2)若点为抛物线在轴负半轴上方的一个动点,求面积的最大值;(3)抛物线对称轴上是否存在点,使为等腰三角形,若存在,请直接写出所有点的坐标,若不存在请说明理由.参考答案一、选择题(每小题3分,共30分)1、C【详解】根据题意得k-10
9、且=2-4(k-1)(-2)0,解得:k且k1故选C【点睛】本题考查了一元二次方程ax+bx+c=0(a0)的根的判别式=b-4ac,关键是熟练掌握:当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当0,方程没有实数根2、B【分析】连接AC,过E作EFAC于F,根据正六边形的特点求出AEC的度数,再由等腰三角形的性质求出EAF的度数,由特殊角的三角函数值求出AF的长,进而可求出AC的长【详解】如图,连接AC,过E作EFAC于F,AE=EC,AEC是等腰三角形,AF=CF,此多边形为正六边形,AEC=120,AEF=60,EAF=30,AF=AEcos30=1=,AC=,故选:B
10、【点睛】本题考查了正多边形的应用,等腰三角形的性质和锐角三角函数,掌握知识点是解题关键3、B【解析】根据平面坐标系中点P(x,y)关于原点对称点是(-x,-y) 即可【详解】解:关于原点对称的点的横纵坐标都互为相反数,因此P(3,-2)关于原点对称的点的坐标是(-3,2)故答案为B【点睛】本题考查关于原点对称点的坐标的关系,解题的关键是理解并识记关于原点对称点的特点4、C【分析】根据图形证明AOECOG,作KMAD,证明四边形DKMN为正方形,再证明RtAEHRtCGF,RtDHGRtBFE,设正方形边长为a,CG=MN=x,根据正方形的性质列出平行四边形的面积的代数式,再化简整理,即可判断.
11、【详解】连接AC,EG,交于O点,四边形是平行四边形,四边形是正方形,GO=EO,AO=CO,又AOE=COGAOECOG,GC=AE,NEAD,四边形AEND为矩形,AE=DN,DN=GC=MN作KMAD,四边形DKMN为正方形,在RtAEH和RtCGF中,RtAEHRtCGF,AH=CF,AD-AH=BC-CFDH=BF,同理RtDHGRtBFE,设CG=MN=x,设正方形边长为a则SHDG=DHx+DGx=SFBESHAE=AHx =SGCFS平行四边形EFGH=a2-2SHDG-2SHAE= a2-(DH+DG+AH)x,DG=a-xS平行四边形EFGH= a2-(a+a-x)x= a
12、2-2ax+x2= (a-x)2故只需要知道a-x就可以求出面积BE=a-x,故选C.【点睛】此题主要考查正方形的性质,解题的关键是根据题意设出字母,表示出面积进行求解.5、D【分析】根据反比例函数和正比例函数的对称性可得,交点A与B关于原点对称,得到B点坐标,再观察图像即可得到的取值范围.【详解】解:比例函数和正比例函数的图象交于,两点,B的坐标为(1,3)观察函数图像可得,则的取值范围为或.故答案为:D【点睛】本题考查反比例函数的图像和性质.6、A【分析】先由图象过点(1,6),求出U的值再由蓄电池为电源的用电器限制电流不得超过10A,求出用电器的可变电阻的取值范围【详解】解:由物理知识可
13、知:I=UR,其中过点(1,6),故U=41,当I10时,由R4.1故选A【点睛】本题考查反比例函数的图象特点:反比例函数y=kx的图象是双曲线,当k0时,它的两个分支分别位于第一、三象限;当k07、D【解析】在RtABC中,CAB=90,B=,AC=800米,根据tan=,即可解决问题.【详解】在RtABC中,CAB=90,B=,AC=800米,tan=,AB=,故选D【点睛】本题考查解直角三角形的应用仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型.8、A【分析】增长率问题,一般用增长后的量=增长前的量(1+增长率),先表示出第一次提价后商品的售价,再根据题意表示第二次提价后的
14、售价,然后根据已知条件得到关于a%的方程【详解】解:当猪肉第一次提价时,其售价为;当猪肉第二次提价后,其售价为故选:.【点睛】本题考查了求平均变化率的方法若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1x)2=b9、B【分析】根据一元二次方程的定义进行求解即可【详解】由题知:,解得,故选:B【点睛】本题考查了利用一元二次方程的定义求参数的值,熟知一元二次方程的定义是解题的关键10、D【解析】过O作OCAB于C,连OA,根据垂径定理得到AC=BC=10,再根据切线的性质得到AB为小圆的切线,于是有圆环的面积=OA2-OC2=(OA2-OC2)=AC2,即可圆
15、环的面积【详解】过O作OCAB于C,连OA,如图,AC=BC,而AB=20,AC=10,AB与小圆相切,OC为小圆的半径,圆环的面积=OA2-OC2=(OA2-OC2)=AC2=100(平方米)故选D【点睛】本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧也考查了切线的性质定理以及勾股定理二、填空题(每小题3分,共24分)11、【分析】根据黄金分割比得出AP,PB的长度,计算出与即可比较大小【详解】解:点是AB的黄金分割点,设AB=2,则,故答案为:【点睛】本题考查了黄金分割比的应用,熟知黄金分割比是解题的关键12、 (3,10)【分析】首先根据坐标求出正方形的边长为6,进而得到D
16、点坐标,然后根据每旋转4次一个循环,可知第70次旋转结束时,相当于OAB与正方形ABCD组成的图形绕点O顺时针旋转2次,每次旋转90,即可得出此时D点坐标【详解】解:A(3,4),B(3,4),AB=3+3=6,四边形ABCD为正方形,AD=AB=6,D(3,10),70=417+2,每4次一个循环,第70次旋转结束时,相当于OAB与正方形ABCD组成的图形绕点O顺时针旋转2次,每次旋转90,此时D点与(3,10)关于原点对称,此时点D的坐标为(3,10)故答案为:(3,10)【点睛】本题考查坐标与图形,根据坐标求出D点坐标,并根据旋转特点找出规律是解题的关键13、1【分析】作所对的圆周角AD
17、B,如图,根据圆周角定理得到ADBAOB55,然后利用圆内接四边形的性质计算C的度数【详解】解:作所对的圆周角ADB,如图,ADBAOB11055,ADB+C180,C180551故答案为1【点睛】本题考查了圆的综合问题,掌握圆周角定理、圆内接四边形的性质是解题的关键14、【分析】由矩形的性质可推出OBC的面积为ABC面积的一半,然后根据中位线的性质可推出OMN的面积为OBC面积的,即可得出答案.【详解】四边形ABCD为矩形ABC=90,BC=AD=4,O为AC的中点,又M、N分别为OB、OC的中点MN=BC,MNBCOMNOBC故答案为:.【点睛】本题考查了矩形的性质,中位线的判定与性质,相
18、似三角形的判定与性质,解题的关键是熟练掌握相似三角形的面积比等于相似比的平方.15、3【解析】圆锥的母线长是5cm,侧面积是15cm2,圆锥的侧面展开扇形的弧长为:l=6,锥的侧面展开扇形的弧长等于圆锥的底面周长,r=3cm,16、120【解析】根据圆锥的侧面积公式S=rl得出圆锥的母线长,再结合扇形面积公式即可求出圆心角的度数【详解】侧面积为3,圆锥侧面积公式为:S=rl=1l=3,解得:l=3,扇形面积为3=,解得:n=120,侧面展开图的圆心角是120度故答案为:120【点睛】此题主要考查了圆锥的侧面积公式应用以及与展开图扇形面积关系,求出圆锥的母线长是解决问题的关键17、3【分析】根据
19、图形可以求得BF的长,然后根据图形即可求得S1S2的值【详解】解:在矩形ABCD中,AB2,BC,F是AB中点,BFBG1,S1S矩形ABCD-S扇形ADES扇形BGF+S2,S1-S22-3-,故答案为:3【点睛】此题考查的是求不规则图形的面积,掌握矩形的性质和扇形的面积公式是解决此题的关键18、1【分析】将函数解析式配方,写成顶点式,按照二次函数的性质可得答案【详解】解:=,抛物线开口向下,当x=6时,h取得最大值,火箭能达到最大高度为1m故答案为:1【点睛】本题考查了二次函数的应用,熟练掌握配方法及二次函数的性质,是解题的关键三、解答题(共66分)19、如图所示见解析.【分析】从正面看,
20、下面一个长方形,上面左边一个长方形;从左面看,下面一个长方形,上面左边一个长方形;从上面看,一个正方形左上角一个小正方形,依此画出图形即可.【详解】如图所示.【点睛】此题考查了三视图,用到的知识点为:三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形20、(1)y;(2)B(m+n,nm);(3)【分析】(1)根据等腰直角三角形性质,直角三角形斜边中线定理,三线合一,得到点坐标,代入解析式即可得到(2)过点作平行于轴的直线,过点作垂直于轴的直线交于点,交轴于点,构造一线三等角全等,得到,所以(3)把点和点的坐标代入反比例函数解析式得到关于、的等式,两边除以,换元法解
21、得的值是【详解】解:(1)过作,交轴于点,为等腰直角三角形,将,代入反比例解析式得:,即,则反比例解析式为;(2)过作轴,过作,在和中,则;(3)由与都在反比例图象上,得到,整理得:,即,这里,在第一象限,则【点睛】此题属于反比例函数综合题,涉及的知识有:全等三角形的判定与性质,坐标与图形性质,等腰直角三角形的性质,以及一元二次方程的解法,熟练掌握反比例函数的性质是解本题的关键21、(1)见解析;(2) ;(3)【分析】(1)根据直径所对的圆周角是直角可得,然后利用ASA判定ACDACE即可推出AE=AD;(2)连接OC交BD于G,设,根据垂径定理的推论可得出OC垂直平分BD,进而推出OG为中
22、位线,再判定,利用对应边成比例即可求出的值;(3)连接OC交BD于G,由(2)可知:OCAB,OG=AB,然后利用ASA判定BHAGHC,设,则,再判定,利用对应边成比例求出m的值,进而得到AB和AD的长,再用勾股定理求出BD,可求出BED的面积,由C为DE的中点可得BEC为BED面积的一半,即可得出答案.【详解】(1)证明:AD是的直径AC平分在ACD和ACE中,ACD=ACE,AC=AC,DAC=EACACDACE(ASA)(2)如图,连接OC交BD于G,设,则,OC=AD=OC垂直平分BD又O为AD的中点OG为ABD的中位线OCAB,OG=,CG= (3)如图,连接OC交BD于G,由(2
23、)可知:OCAB,OG=ABBHA=GCH在BHA和GHC中,BHA=GCH,AH=CH,BHA=GHC设,则又,AD是的直径又【点睛】本题考查了圆周角定理,垂径定理的推论,全等三角形的判定和性质,相似三角形的判定和性质,以及勾股定理,是一道圆的综合问题,解题的关键是连接OC利用垂径定理得到中位线.22、 (1)与周长的比等于相似比等于;(2)【分析】(1)根据平行四边形对边平行,得到两个三角形相似,根据两个三角形相似,得到AEF与CDF的周长比等于对应边长之比,做出两个三角形的边长之比,可得AEF与CDF的周长比;(2)利用两个三角形的面积之比等于边长之比的平方,利用两个三角形的边长之比,根
24、据AEF的面积等于6cm2,得到要求的三角形的面积【详解】解:由得,又是平行四边形,由得所以与周长的比等于相似比等于.由由解得.【点睛】本题考查三角形相似的性质,两个三角形相似,对应的高线,中线和角平分线之比等于边长之比,两个三角形的面积之比等于边长比的平方,这种性质用的比较多23、(1)见解析;(2);(3)AE【分析】(1)如图1,连接OD,由等腰三角形的性质可证BODBCAD,由直角三角形的性质可求ADO90,可得结论;(2)分别求出OD的长度和DOB的度数,再由弧长公式可求解;(3)通过证明ACDBDE,可得,设CD2x,DE3x,由平行线的性质可求x,由勾股定理可求AB的长,即可求解
25、【详解】解:(1)如图1,连接OD,ACB90,CAD+ADC90,OBOD,BODB,CADB,CADODB,ODB+ADC90,ADO90,又OD是半径,AD是O的切线;(2)B30,ACB90,CAD30,CAB60,AD2CD3,DAB30,ADOD,OD,ODOB,B30,BODB30,DOB120,劣弧BD的长;(3)如图2,连接DE,BE是直径,BDE90,ACBEDB90,ACDE,BCAD,ACDEDB,ACDBDE,设CD2x,DE3x,ACDE,x,CD1,BCBD+CD4,AB2,DEAC,AE【点睛】此题考查的是圆的综合大题、勾股定理和相似三角形的判定及性质,掌握切线
26、的判定定理、弧长公式圆周角定理及推论、勾股定理和相似三角形的判定及性质是解决此题的关键24、证明见解析【分析】连接OC,证明三角形COD和COE全等;然后利用全等三角形的对应边相等得到CD=CE【详解】解:连接OC在O中,AOC=BOC,OA=OB,DE分别是半径OA和OB的中点,OD=OE,OC=OC(公共边),CODCOE(SAS),CD=CE(全等三角形的对应边相等)【点睛】本题考查圆心角、弧、弦的关系;全等三角形的判定与性质25、(3)3和2;2;(2)见解析;(2)2或3【分析】(3)根据不变值的定义可得出关于x的一元二次方程,解之即可求出x的值,再做差后可求出A的值;(2)由方程的系数结合根的判别式可得出方程2x2x+33没有实数根,进而可得出代数式2x2+3没有不变值;(2)由A3可得出方程x2(b+3)x+33有两个相等的实数根,进而可得出3,解之即可得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浮肿的诊断与鉴别诊断
- 法律咨询服务中介合同模板
- 城市公交天然气运输合同
- 艾滋病防治健康知识讲座
- 水痘患者的治疗与护理
- 净业环保水处理设备生产建设项目可行性研究报告写作模板-备案审批
- 报废汽车拆解回收再利用项目可行性研究报告写作模板-备案审批
- 玻璃仪器培训
- 2024漯河市召陵区中等专业学校工作人员招聘考试及答案
- 2024湖南中德交通技工学校工作人员招聘考试及答案
- 甘肃省卫生健康委公务员考试招聘112人往年题考
- 数字化赋能护理质量管理研究进展与价值共创视角
- 冲压模具设计与制造工艺考试复习题库(含答案)
- 2025牡丹江辅警考试题库
- 2024年新高考广西高考生物真题试卷及答案
- 2024-2025学年北师大版七年级数学下册期中模拟卷
- 2025部编人教版小学二年级语文下册全册教案
- 电网工程设备材料信息参考价(2024年第四季度)
- 考试失利后的心态调整与复盘
- 2023中国偏头痛诊断与治疗指南
- 2025年度润滑油产品研发与市场销售合作协议2篇
评论
0/150
提交评论