已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
- -方法。这里就不一一介绍这些方法了。在实践中只有最简便的方法,才是最实用的,很多的方法虽然可以求出逆矩阵,但是方法太过复杂,但不能忽略那些思想,也许在某一个领域,这种思想才是最实用的。总结在求解一个矩阵的逆矩阵,很多人往往直接求解而不注重分析一个矩阵是否可逆,甚至有人直接拿着一个不是方阵的矩阵去求解逆矩阵,他就不会想到一个矩阵要可逆,最基本的前提:矩阵必须是一个方阵。然而也有很多的人知道这个前提,虽然知道怎么求解一个矩阵的逆矩阵,但是却不会去判断一个矩阵是否可逆。这样做很多时候只会浪费时间去求一个不可逆的矩阵。本文中也介绍了几种判断矩阵可逆的方法,虽然不是很全面,但是对一般矩阵可逆的判断已经足够了。在知道矩阵可逆之后,再去求解矩阵的逆矩阵才是明智的。对于矩阵的逆矩阵求解,本文介绍了两种求一般矩阵逆矩阵的方法,初等变换法,伴随矩阵法,对于不是研究的人员这已经足够了。最后,在面对一个阶方阵F匕求逆矩阵时,也可以直接套公式4-.IW-H,LC矶adbcL-。(U这是伴随矩阵法求二阶逆矩阵的过程,也是较为方便的。1姚慕生,高等代数学M,上海:复旦大学出版社(第二版),2002张禾瑞,郝炳新,高等代数M,北京:高等教育出版社(第五版),20073同济大学数学系
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 单位管理制度呈现合集员工管理篇
- 单位管理制度呈现大合集人员管理篇
- 工作转正自我鉴定4篇
- 3D打印在计算机维修中的创新应用
- 《用色彩画心情》课件
- 第3单元+中国特色社会主义道路
- 物流行业顾问工作总结
- 乒乓球比赛的作文汇编10篇
- 输液室护士的职责概述
- 游乐园前台服务感悟
- 【9历期末】安徽省合肥市包河区智育联盟2023-2024学年九年级上学期1月期末历史试题
- 2024年度专业外语培训机构兼职外教聘任合同3篇
- 个人的车位租赁合同范文-个人车位租赁合同简单版
- 2025-2025学年小学数学教研组工作计划
- 水族馆改造合同
- 湖南省益阳市2022-2023学年高三上学期数学期末试卷
- 【MOOC】教学研究的数据处理与工具应用-爱课程 中国大学慕课MOOC答案
- 《小学科学实验创新》课件
- 拌合站安全事故案例
- 《红色家书》读书分享会主题班会课件
- 2025年广东省春季高考数学仿真模拟试卷试题(含答案解析+答题卡)
评论
0/150
提交评论