版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、九年级数学下册第六章对概率的进一步认识章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、盒子中装有1个红球和2个绿球,每个球除颜色外都相同,从盒子中任意摸出1个球,不放回,再任意摸出1个球,两球都是
2、绿球的概率是( )ABCD2、有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁,随机取出一把钥匙去开任意的一把锁,一次打开锁的概率为( )ABCD3、在一个不透明纸箱中放有除了数字不同外,其它完全相同的2张卡片,分别标有数字1、2,从中任意摸出一张,放回搅匀后再任意摸出一张,两次摸出的数字之和为奇数的概率为( )ABCD4、某区为了解初中生体质健康水平,在全区进行初中生体质健康的随机抽测,结果如下表:根据抽测结果,下列对该区初中生体质健康合格的概率的估计,最合理的是( ) 累计抽测的学生数n1002003004005006007008009001000体质健
3、康合格的学生数与n的比值0.850.90.930. 910.890.90.910.910.920.92A0.92B0.905C0.03D0.95、两次连续掷一枚质地均匀的骰子,点数都是2朝上的概率是()ABCD6、若a是从“、0、1、2”这四个数中任取的一个数,则关于x的方程为一元二次方程的概率是( )A1BCD7、某水果超市为了吸引顾客来店购物,设立了一个如图所示的可以自由转动的转盘,开展有奖购物活动顾客购买商品满200元就能获得一次转动转盘的机会,当转盘停止时,指针落在“一袋苹果”的区域就可以获得一袋苹果;指针落在“一袋橘子”的区域就可以获得一袋橘子若转动转盘2000次,指针落在“一袋橘子
4、”区域的次数有600次,则某位顾客转动转盘一次,获得一袋橘子的概率大约是( )A0.3B0.7C0.4D0.28、在一个口袋中有2个完全相同的小球,它们的标号分别为1,2从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和是3的概率是( )ABCD9、从数2,0,4中任取一个数记为m,再从余下的三个数中,任取一个数记为n,若,则正比例函数的图象经过第一、三象限的概率是( )ABCD10、养鱼池养了同一品种的鱼,要大概了解养鱼池中的鱼的数量,池塘的主人想出了如下的办法:“他打捞出80尾鱼,做了标记后又放回了池塘,过了三天,他又捞了一网,发现捞起的90尾鱼中,带标
5、记的有6尾”你认为池塘主的做法( )A有道理,池中大概有1200尾鱼B无道理C有道理,池中大概有7200尾鱼D有道理,池中大概有1280尾鱼第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某水果公司以2.2元/千克的成本价购进10000kg苹果,公司想知道苹果的损坏率,从所有苹果中随机抽取若干进行统计,部分结果如表:抽取的苹果总质量1002003004005001000损坏苹果质量10.6019.4230.6339.2449.54101.10苹果损坏的频率0.1060.0970.1020.0980.0990.101估计这批苹果损坏的概率为_(精确到0.1);据此,若公司
6、希望这批苹果能获得利润23000元,则销售时(去掉损坏的苹果)售价应定为_元/千克2、在一个不透明的布袋中,黄色、红色的乒乓球共10个,这些球除颜色外其他都相同小刚通过多次摸球实验后发现其中摸到黄球的频率稳定在60%,则布袋中红色球的个数很可能是_个3、在一个不透明的袋子里,有2个白球和2个红球,它们只有颜色上的区别,从袋子里随机摸出两个球,则摸到两个都是红球的概率是_4、大数据分析技术为打赢疫情防控阻击战发挥了重要作用,如图是小乐同学的健康码(绿码)示意图,用黑白打印机打印于边长为4cm的正方形区域内,为了估计图中黑色部分的总面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分
7、的频率稳定在0.6左右,据此可以估计黑色部分的总面积约为 _cm25、现有4张卡片,正面图案如图所示,它们除此之外完全相同,把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案恰好是“天问”和“九章”的概率是 _三、解答题(5小题,每小题10分,共计50分)1、为落实我市关于开展中小学课后服务工作的要求,某学校开设了四门校本课程供学生选择:A趣味数学;B博乐阅读;C快乐英语;D硬笔书法某年级共有100名学生选择了A课程,为了解本年级选择A课程学生的学习情况,从这100名学生中随机抽取了30名学生进行测试,将他们的成绩(百分制)分成六组,绘制成频数分布直方图(1)该年级学生小乔随机选
8、取了一门课程,则小乔选中课程C的概率是 ;(2)根据题中信息,估计该年级选择A课程学生成绩在80 x90的总人数;(3)该年级每名学生选两门不同的课程,小张和小王在选课程的过程中,若第一次都选了课程C,那么他俩第二次同时选择课程A或课程B的概率是多少?请用列表法或树状图的方法加以说明2、在“庆元旦、迎新年”班级活动中,同学们准备了四个节目:A唱歌、B跳舞、C说相声、D弹古筝并通过抽签的方式决定这四个节目的表演顺序(1)第一个节目是说相声的概率是_;(2)求第二个节目是弹古筝的概率3、为坚持“五育并举”,落实立德树人根本任务,教育部出台了“五项管理”举措我校对九年级部分家长就“五项管理”知晓情况
9、作调查,A:完全知晓,B:知晓,C:基本知晓,D:不知晓九年级组长将调查情况制成了如下的条形统计图和扇形统计图请根据图中信息,回答下列问题: (1)共调查了多少名家长?写出图2中选项所对应的圆心角,并补齐条形统计图;(2)我校九年级共有450名家长,估计九年级“不知晓五项管理”举措的家长有多少人;(3)已知选项中男女家长数相同,若从选项家长中随机抽取2名家长参加“家校共育”座谈会,请用列表或画树状图的方法,求抽取家长都是男家长的概率4、深圳某地铁站入口有A,B,C三个安全检查口,假定每位乘客通过任意一个安全检查口的可能性相同张红与李萍两位同学需要通过该地铁入口乘坐地铁(1)张红选择A安全检查口
10、通过的概率是 ;(2)请用列表或画树状图的方法求出她俩选择相同安全检查口通过的概率5、小明代表学校参加“我和我的祖国”主题宣传教育活动该活动分为两个阶段,第一阶段有“歌曲演唱”、“书法展示”、“器乐独奏”3个项目(依次用A、B、C表示),第二阶段有“故事演讲”、“诗歌朗诵”2个项目(依次用D、E表示),并求小明恰好抽中B、D两个项目的概率-参考答案-一、单选题1、B【解析】【分析】利用列表法把所有等可能的情况都列出来,然后分析出两球都是绿球的情况,根据概率公式求解即可【详解】所有等可能的情况如下:红球绿球1绿球2红球(绿球1,红球)(绿球2,红球)绿球1(红球,绿球1)(绿球2,绿球1)绿球2
11、(红球,绿球2)(绿球1,绿球2)一共有6种等可能的情况,其中两球都是绿球的情况有2种,两球都是绿球的概率是故选:B【点睛】本题考查的是用列表法或画树状图法求概率解题的关键是熟练掌握列表法或画树状图法列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件用到的知识点为:概率=所求情况数与总情况数之比2、B【解析】【分析】根据题意列出表格,得出所有等可能的情况数,找出随机取出一把钥匙开任意一把锁,一次打开锁的情况数,即可求出所求的概率【详解】解:列表得:锁1锁2钥匙1(锁1,钥匙1)(锁2,钥匙1)钥匙2(锁1,钥匙2)(锁2,钥
12、匙2)钥匙3(锁1,钥匙3)(锁2,钥匙3)由表可知,所有等可能的情况有6种,其中随机取出一把钥匙开任意一把锁,一次打开锁的2种,则P(一次打开锁)故选:B.【点睛】本题考查列表法与树状图法求概率,注意掌握概率=所求情况数与总情况数之比是解题的关键3、C【解析】【分析】根据题意画出树状图求解即可【详解】解:画树状图如下共有4种等可能的结果,两次摸出的数字之和为奇数的结果有2种两次摸出的数字之和为奇数的概率为故选:C【点睛】此题考查了概率的问题,解题的关键是画出树状图求概率4、A【解析】【分析】根据频数估计概率可直接进行求解【详解】解:由表格可知:经过大量重复试验,体质健康合格的学生数与抽测的学
13、生数n的比值稳定在0.92附近,所以该区初中生体质健康合格的概率为0.92;故选A【点睛】本题主要考查用频数估计概率,熟练掌握利用频数估计概率是解题的关键5、A【解析】【分析】列表得出所有等可能的情况数,找出两个骰子点数都是2的情况数,即可求出所求的概率【详解】解:列表如下:1234561(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)2(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)3(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)4(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)5(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)6
14、(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)所有等可能的情况有36种,其中点数都是2的情况只有(2,2),1种,则P=故选:A【点睛】本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比6、B【解析】【分析】根据一元二次方程的定义,二次项系数不为0,四个数中有一个1不能取,a是从“、0、1、2”这四个数中任取的一个数,有四种等可能的结果,其中满足条件的情况有3种,然后利用概率公式计算即可【详解】解:当a=1时于x的方程不是一元二次方程,其它三个数都是一元二次方程,a是从“、0、1、2”这四个数中任取的一个数,有四种等可能的结果,其中满足条件的情况有3种,关
15、于x的方程为一元二次方程的概率是,故选择B【点睛】本题考查一元二次方程的定义,列举法求概率,掌握一元二次方程的定义,列举法求概率方法是解题关键7、A【解析】【分析】用频率估计概率即可得到答案【详解】某位顾客转动转盘一次,获得一袋橘子的概率大约是故选:A【点睛】本题考查用频率估计概率,掌握大量的重复试验时频率可视为事件发生概率的估计值8、B【解析】【分析】列表展示所有4种等可能的情况数,找出符合条件的情况数,然后根据概率公式求解即可【详解】解:列表如下:12123234由表知,共有4种等可能结果,其中两次摸出的小球的标号之和是3的有2种结果,所以两次摸出的小球的标号之和是3的概率为,故选:B【点
16、睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率9、C【解析】【分析】根据题意列表求概率,正比例函数的图象经过第一、三象限则,据此判断即可【详解】解列表如下:共有12种等可能结果,其中满足的有2种,则正比例函数的图象经过第一、三象限的概率是故选C【点睛】本题考查了正比例函数的性质,列表法求概率,掌握列表法求概率是解题的关键10、A【解析】【分析】设池中大概有鱼x尾,然后根据题意可列方程,进而问题可求解【详解】解:设池中大概有鱼x尾,由题意得:,解得:,经检验:是原方程的解;池塘主的做法有
17、道理,池中大概有1200尾鱼;故选A【点睛】本题主要考查分式方程的应用及概率,熟练掌握分式方程的应用及概率是解题的关键二、填空题1、 【解析】【分析】根据利用频率估计概率得到随实验次数的增多,发芽的频率越来越稳定在0.1左右,由此可估计苹果的损坏概率为0.1;根据概率计算出完好苹果的质量为100000.9=9000千克,设每千克苹果的销售价为x元,然后根据“售价=成本+利润”列方程解答【详解】解:根据表中的损坏的频率,当实验次数的增多时,苹果损坏的频率越来越稳定在0.1左右, 所以苹果的损坏概率为0.1 根据估计的概率可以知道,在10000千克苹果中完好苹果的质量为100000.9=9000千
18、克 设每千克苹果的销售价为x元,则应有9000 x=2.210000+23000, 解得x=5 答:出售苹果时每千克大约定价为5元可获利润23000元 故答案为:0.1,5【点睛】本题考查了利用频率估计概率,用到的知识点为:频率=所求情况数与总情况数之比,理解销售额等于成本加上利润是解决(2)的关键2、4【解析】【分析】设出黄球的个数,根据黄球的频率求出黄球的个数即可解答【详解】设黄球的个数为x,共有黄色、红色的乒乓球10个,黄球的频率稳定在60%,解得:,布袋中红色球的个数很可能是(个)故答案为:4【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率,关键是根据黄球的频率得到相
19、应的等量关系,列出方程3、【解析】【分析】先用列表法分析所有等可能的结果和摸到两个都是红球的结果数,然后根据概率公式求解即可【详解】解:记红球为,白球为,列表得:一共有12种情况,摸到两个都是红球有2种,P(两个球都是红球),故答案是【点睛】本题主要考查了用列表法或画树状图法求概率,列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件4、9.6【解析】【分析】先根据经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,可估计点落入黑色部分的概率为0.6,再乘以正方形的面积即可得出答案【详解】解:经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,估计点落入
20、黑色部分的概率为0.6,估计黑色部分的总面积约为440.69.6(cm2),故答案为:9.6【点睛】本题主要考查利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率5、【解析】【分析】画树状图,共有12种等可能的结果,两张卡片正面图案恰好是“天问”和“九章”的结果有2种,再由概率公式求解即可【详解】解:把4张卡片分别记为:A、B、C、D,画树状图如下:共有12种等可能的结果,两张卡片正面图案恰好是“天问”和“九章”的结果有2种,两张卡片正面图案恰好是“天问”和“
21、九章”的概率为故答案为:【点睛】本题主要考查了求概率,能根据题意画出树状图是解题的关键三、解答题1、 (1)(2)30人(3),见解析【解析】【分析】(1)直接根据概率公式求解即可;(2)用总人数乘以样本中成绩在80 x90的人数所占比例;(3)画树状图,可能的结果共有12种,小张同时选择课程A或课程B的情况共有2种,再由概率公式求解即可(1)解:该年级学生小乔随机选取了一门课程,则小乔选中课程C的概率是,故答案为:;(2)解:观察直方图,抽取的30名学生,成绩在80 x90范围内选取A课程的有9人,所占比为,10030(人),所以估计该年级选取A课程的总人数为30人;(3)解:因该年级每名学
22、生选两门不同的课程,第一次都选了课程C,列树状图如下:等可能结果共有9种,他俩第二次同时选择课程A或课程B的有2种,所以,他俩第二次同时选择课程A或课程B的概率是【点睛】本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件用到的知识点为:概率=所求情况数与总情况数之比2、 (1)(2)【解析】【分析】(1)直接根据概率公式即可求解;(2)根据题意画出树状图,得到共有12种等可能性,其中第二个节目是D弹古筝的结果有3种,根据概率公式即可求解(1)解:第一个节目是说相声的概率是,故答案为:;(2)解:画树状图如下:由树状图得共有12种等可能性,其中第二个节目是D弹古筝的结果有3种,第二个节目是弹古筝的概率是【点睛】本题考查了列举法求概率,熟知概率公式,并根据题意利用树状图或画表格列举出所有等可能结果是解题关键3、 (1)50,图见解析(2)36(3)【解析】【分析】(1)利用A选项的人数和A选项所占的百分数求解调查的家长人数,再由B选项所占的百分数求解B选项的人数,进而可求出D选项的人数,即可补全条形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度消防设备设施操作培训及考核协议
- 2025版酒店客房客房服务外包及培训合同3篇
- 2025年度杭州市固废处理与资源化利用合同3篇
- 二零二五年度人工智能技术研发与咨询服务合同样本3篇
- 解读《诗经》的恋情
- 教学效果月度回顾
- 教学变革之路
- 二零二五年度商业综合体建设总包恒大承包合同2篇
- 有机农业 赋能未来
- 二零二五年度房地产首付分期协议书范本全新版3篇
- 散状料上料安全操作规程模版(3篇)
- 2025户外品牌探路者线上新媒体运营方案
- 《个案工作介入涉罪未成年人的家庭帮教研究》
- 统编版(2024新版)七年级上册道德与法治期末综合测试卷(含答案)
- 文化创意合作战略协议
- 国家开放大学法学本科《商法》历年期末考试试题及答案题库
- 2023年黑龙江日报报业集团招聘工作人员考试真题
- 安全管理人员安全培训教材
- 2024年妇保科工作总结及计划
- 北京理工大学《数据结构与算法设计》2022-2023学年第一学期期末试卷
- 锚杆(索)支护工技能理论考试题库200题(含答案)
评论
0/150
提交评论