精品解析2022年最新浙教版初中数学七年级下册第四章因式分解专题攻克试题(名师精选)_第1页
精品解析2022年最新浙教版初中数学七年级下册第四章因式分解专题攻克试题(名师精选)_第2页
精品解析2022年最新浙教版初中数学七年级下册第四章因式分解专题攻克试题(名师精选)_第3页
精品解析2022年最新浙教版初中数学七年级下册第四章因式分解专题攻克试题(名师精选)_第4页
精品解析2022年最新浙教版初中数学七年级下册第四章因式分解专题攻克试题(名师精选)_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、章节同步练习2022年浙教版初中数学 章节同步练习2022年浙教版初中数学 七年级下册知识点习题定向攻克含答案及详细解析第四章 因式分解浙教版初中数学七年级下册第四章因式分解专题攻克(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、小明是一名密码翻译爱好者,在他的密码手册中有这样一条信息:,分别对应下列六个字:勤,博,奋,学,自,主,现将因式分解,结果呈现的密码信息应是( )A.勤奋博学B.博学自主C.自主勤奋D.勤奋自主2、已知,则的值为( )A.0和1B.0和2C.0和-1D.0或13、下

2、列各式中,因式分解正确的是( )A.B.C.D.4、下列各选项中因式分解正确的是( )A.x21(x1)2B.a32a2aa2(a2)C.2y24y2y(y2)D.a2b2abbb(a1)25、下面从左到右的变形中,因式分解正确的是()A.2x24xy2x(x+2y)B.x2+9(x+3)2C.x22x1(x1)2D.(x+2)(x2)x246、若是整数,则一定能被下列哪个数整除( )A.2B.3C.5D.77、小南是一位密码编译爱好者,在他的密码手册中有这样一条信息:x1,ab,3,x2+1,a,x+1分别对应下列六个字:化,爱,我,数,学,新,现将3a(x21)3b(x21)因式分解,结果

3、呈现的密码信息可能是()A.我爱学B.爱新化C.我爱新化D.新化数学8、下列等式中,从左往右的变形为因式分解的是()A.a2a1a(a1)B.(ab)(a+b)a2b2C.m2m1m(m1)1D.m(ab)+n(ba)(mn)(ab)9、下列因式分解正确的是()A.2p+2q+12(p+q)+1B.m24m+4(m2)2C.3p23q2(3p+3q)(pq)D.m41(m+1)(m1)10、下列多项式中有因式x1的是()x2+x2;x2+3x+2;x2x2;x23x+2A.B.C.D.11、若x2+mx+n分解因式的结果是(x2)(x+1),则m+n的值为()A.3B.3C.1D.112、把多

4、项式a39a分解因式,结果正确的是()A.a(a29)B.(a+3)(a3)C.a(9a2)D.a(a+3)(a3)13、下列各式能用平方差公式分解因式的是( )A.B.C.D.14、下列各式从左到右的变形是因式分解的是( )A.axbxc(ab)xcB.(ab)(ab)a2b2C.(ab)2a22abb2D.a25a6(a6)(a1)15、下列分解因式的变形中,正确的是( )A.xy(xy)x(yx)x(yx)(y1)B.6(ab)22(ab)(2ab)(3ab1)C.3(nm)22(mn)(nm)(3n3m2)D.3a(ab)2(ab)(ab)2(2ab)二、填空题(10小题,每小题4分,

5、共计40分)1、因式分解:x26x_;(3mn)23m+n_2、因式分解:_3、如果两个多项式有公因式,则称这两个多项式为关联多项式,若x225与(xb)2为关联多项式,则b_;若(x1)(x2)与A为关联多项式,且A为一次多项式,当Ax26x2不含常数项时,则A为_4、因式分解x2+ax+b时,李明看错了a的值,分解的结果是(x+6)(x2),王勇看错了b的值,分解的结果是(x+2)(x3),那么x2+ax+b因式分解正确的结果是_5、若多项式x2+ax+b可分解为(x+1)(x+4),则a_,b_6、若mn3,mn7,则m2nmn2_7、已知实数a和b适合a2b2a2b214ab,则ab_

6、8、若多项式可以分解成,则的值为_9、若,则多项式的值为_10、分解因式:_三、解答题(3小题,每小题5分,共计15分)1、把因式分解2、分解因式,细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的因式分解了,过程如下:这种分解因式的方法叫分组分解法,利用这种方法解决下列问题:(1)因式分解:;(2)已知的三边a,b,c满足,判断的形状3、材料一:对于个位数字不为零的任意三位数M,将其个位数字与百位数字对调得到M,则称M为M的“倒序数”,将一个数与它的“倒序数”的差的绝对值与99的商记为F(M)例如523

7、为325的“倒序数”,F(325)2;材料二:对于任意三位数满足,ca且a+c2b,则称这个数为“登高数”(1)F(935);F(147);(2)任意三位数M,求F(M)的值;(3)已知S、T均为“登高数”,且2F(S)+3F(T)24,求S+T的最大值-参考答案-一、单选题1、A【分析】将式子先提取公因式再用平方差公式因式分解可得:(x2-y2)a2-(x2-y2)b2=(x2-y2)(a2-b2)=(x+y)(x-y)(a+b)(a-b),再结合已知即可求解.【详解】解:(x2-y2)a2-(x2-y2)b2=(x2-y2)(a2-b2)=(x+y)(x-y)(a+b)(a-b),由已知可

8、得:勤奋博学,故选:A.【点睛】本题考查了因式分解的应用;将已知式子进行因式分解,再由题意求是解题的关键.2、B【分析】根据已知条件得出(x-1)3-(x-1)=0,再通过因式分解求出x的值,然后代入要求的式子进行计算即可得出答案.【详解】解:,x-1=(x-1)3,(x-1)3-(x-1)=0,(x-1)(x-1)2-1=0,(x-1)(x-1+1)(x-1-1)=0,x(x-1)(x-2)=0,x1=0,x2=1,x3=2,x2-x=0或x2-x=12-1=0或x2-x=22-2=2,故选:B.【点睛】此题考查了立方根,因式分解的应用,解题的关键是通过式子变形求出x的值.3、C【分析】直接

9、利用公式法以及提取公因式法分解因式,进而判断得出答案.【详解】解:.,故此选项不合题意;.,无法分解因式,故此选项不合题意;,故此选项符合题意;.,故此选项不合题意;故选:.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用提取公因式法以及公式法分解因式是解题关键.4、D【分析】因式分解是将一个多项式化成几个整式的积的形式,根据定义分析判断即可.【详解】解:A、,选项错误;B、,选项错误;C、 ,选项错误;D、,选项正确.故选:D【点睛】本题考查的是因式分解,能够根据要求正确分解是解题关键.5、A【分析】根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.【详解】解:A、

10、把一个多项式转化成两个整式乘积的形式,故A正确;B、等式不成立,故B错误;C、等式不成立,故C错误;D、是整式的乘法,故D错误;故选:A.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式乘积的形式,注意因式分解与整式乘法的区别.6、A【分析】根据题目中的式子,进行因式分解,根据a是整数,从而可以解答本题.【详解】解:a2+a=a(a+1),a是整数,a(a+1)一定是两个连续的整数相乘,a(a+1)一定能被2整除,选项B、C、D不符合要求,所以答案选A,故选:A.【点睛】本题考查了因式分解的应用,准确理解题意并熟练掌握因式分解的方法是解题的关键.7、C【分析】把所给的式子

11、运用提公因式和平方差公式进行因式分解,查看对应的字即可得出答案.【详解】解:,x1,ab,3,x2+1,a,x+1分别对应下列六个字:化,爱,我,数,学,新,结果呈现的密码信息可能是:我爱新化,故选:C.【点睛】本题考查因式分解,解题的关键是熟练掌握提公因式法和套用平方差公式.8、D【分析】把一个多项式化为几个整式的乘积的形式叫因式分解,根据定义对各选项进行一一分析判断即可.【详解】A. a2a1a(a1)从左往右的变形是乘积形式,但(a1)不是整式,故选项A不是因式分解;B. (ab)(a+b)a2b2,从左往右的变形是多项式的乘法,故选项B不是因式分解;C. m2m1m(m1)1,从左往右

12、的变形不是整体的积的形式,故选项C不是因式分解;D.根据因式分解的定义可知 m(ab)+n(ba)(mn)(ab)是因式分解,故选项D从左往右的变形是因式分解.故选D.【点睛】本题考查因式分解,掌握因式分解的特征从左往右的变形后各因式乘积,各因式必须为整式,各因式之间不有加减号是解题关键.9、B【分析】利用提取公因式法、平方差公式和完全平方公式法分别因式分解分析得出答案.【详解】解:A、2p+2q+1不能进行因式分解,不符合题意;B、m2-4m+4=(m-2)2,符合题意;C、3p2-3q2=3(p2-q2)=3(p+q)(p-q),不符合题意;D、m4-1=(m2+1)(m2-1)=m4-1

13、=(m2+1)(m+1)(m-1),不符合题意;故选择:B【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.10、D【分析】根据十字相乘法把各个多项式因式分解即可判断.【详解】解:x2+x2;x2+3x+2;x2x2;x23x+2.有因式x1的是.故选:D.【点睛】本题考查了十字相乘法因式分解,对于形如的二次三项式,若能找到两数,使,且,那么就可以进行如下的因式分解,即.11、A【分析】先根据多项式乘以多项式法则进行计算,再根据已知条件求出m、n的值,最后求出答案即可.【详解】解:(x2)(x+1)x2+x2x2x2x2,二次三项式x2+mx+n可分解为(x

14、2)(x+1),m1,n2,m+n1+(2)3,故选:A.【点睛】本题考查了多项式乘以多项式法则和分解因式,能够理解分解因式和多项式乘多项式是互逆运算是解决本题的关键.12、D【分析】先用提公因式法,再用平方差公式即可完成.【详解】a39aa(a29)a(a+3)(a3).故选:D.【点睛】本题考查了因式分解,用到了提公因式法和公式法,因式分解一般是先考虑提公因式法,再考虑公式法,注意的是,因式分解要进行到再也不能分解为止.13、D【分析】根据平方差公式逐个判断即可.【详解】解:A.是m和n的平方和,不是m和n的平方差,不能用平方差公式分解因式,故本选项不符合题意;B.是2x和y的平方和,不是

15、2x和y的平方差,不能用平方差公式分解因式,故本选项不符合题意;C.是2a和b的平方和的相反数,不能用平方差公式分解因式,故本选项不符合题意;D.,能用平方差公式分解因式,故本选项符合题意;故选:D.【点睛】本题考查了平方差公式分解因式,能熟记公式a2-b2=(a+b)(a-b)是解此题的关键.14、D【分析】根据因式分解的定义对各选项进行逐一分析即可.【详解】解:A、axbxc(ab)xc,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;B、(ab)(ab)a2b2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;C、(ab)2a22abb2,等式的右边不是几个整

16、式的积,不是因式分解,故此选项不符合题意;D、a25a6(a6)(a1),等式的右边是几个整式的积的形式,故是因式分解,故此选项符合题意;故选:D.【点睛】本题考查了分解因式的定义.解题的关键是掌握分解因式的定义,即把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.15、A【分析】按照提取公因式的方式分解因式,同时注意分解因式后的结果,一般而言每个因式中第一项的系数为正.【详解】解:A、xy(x-y)-x(y-x)=-x(y-x)(y+1),故本选项正确;B、6(a+b)2-2(a+b)=2(a+b)(3a+3b-1),故本选项错误;C、3(n-m)2+2(

17、m-n)=(n-m)(3n-3m-2),故本选项错误;D、3a(a+b)2-(a+b)=(a+b)(3a2+3ab-1),故本选项错误.故选:A.【点睛】本题考查提公因式法分解因式.准确确定公因式是求解的关键.二、填空题1、x(x6) (3mn)(3mn1) 【分析】把x26x 中x提取出来即可,给(3mn)23m+n先加括号,然后再运用提取公因式法分解因式即可.【详解】解:x26xx(x6);(3mn)23m+n(3mn)2(3mn)(3mn)(3mn1).故答案为:x(x6),(3mn)(3mn1).【点睛】本题主要考查了提取公因式法分解因式,正确添加括号成为解答本题的关键.2、【分析】先

18、提取公因式3,再对余下的多项式利用平方差公式继续分解.【详解】解:3x2-3y2=3(x2-y2)=3(x+y)(x-y).故答案为:3(x+y)(x-y).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.3、5 -2x-2或-x-2 【分析】先将x2-25因式分解,再根据关联多项式的定义分情况求出b;再分A=k(x+1)=kx+k或A=k(x+2)=kx+2k两种情况,根据不含常数项.【详解】解:x2-25=(x+5)(x-5),x2-25的公因式为x+5、x-5.若x2-25与(x+b

19、)2为关联多形式,则x+b=x+5或x+b=x-5.当x+b=x+5时,b=5.当x+b=x-5时,b=-5.综上:b=5.(x+1)(x+2)与A为关联多项式,且A为一次多项式,A=k(x+1)=kx+k或A=k(x+2)=kx+2k,k为整数.当A=k(x+1)=kx+k(k为整数)时,若A+x2-6x+2不含常数项,则k+2=0,即k=-2.A=-2(x+1)=-2x-2.当A=k(x+2)=kx+2k(k为整数)时,若A+x2-6x+2不含常数项,则2k+2=0,即k=-1.A=-x-2.综上,A=-2x-2或A=-x-2.故答案为:5,-2x-2或-x-2.【点睛】本题主要考查多项式

20、、公因式,熟练掌握多项式、公因式的意义是解决本题的关键.4、(x4)(x+3)【分析】根据甲、乙看错的情况下得出a、b的值,进而再利用十字相乘法分解因式即可.【详解】解:因式分解x2+ax+b时,李明看错了a的值,分解的结果是(x+6)(x2),b6(2)12,又王勇看错了b的值,分解的结果为(x+2)(x3),a3+21,原二次三项式为x2x12,因此,x2x12(x4)(x+3),故答案为:(x4)(x+3).【点睛】本题主要考查了十字相乘分解因式,解题的关键在于能够熟练掌握十字相乘法.5、5 4 【分析】把(x+1)(x+4)展开,合并同类项,可确定a、b的值.【详解】解:(x+1)(x

21、+4),=,=,;故答案为:5,4.【点睛】本题考查了因式分解和多项式乘多项式,解题关键是熟练运用多项式的乘法法则进行计算,取得字母的值.6、21【分析】把所求的式子提取公因式mn,得mn(m-n),把相应的数字代入运算即可.【详解】解:mn=3,m-n=7,m2n-mn2=mn(m-n)=37=21.故答案为:21.【点睛】本题主要考查因式分解-提公因式法,解答的关键是把所求的式子转化成含已知条件的式子的形式.7、2或2【分析】先将原式分组分解因式,再根据非负数的性质“两个非负数相加和为0,这两个非负数的值都为0”即可求得a、b的值,再代入计算即可求得答案.【详解】解:a2b2a2b214a

22、b,a2b22ab1a22abb20,(ab1)2(ab)20,又(ab1)20,(ab)20,ab10,ab0,ab1,ab,a21,a1,ab1或ab1,当ab1时,ab2;当ab1时,ab2,故答案为:2或2.【点睛】此题考查了因式分解的运用,非负数的性质,熟练掌握完全平方公式是解决本题的关键.8、-6【分析】直接利用完全平方公式完全平方公式:a22ab+b2=(ab)2,得出k的值.【详解】解:多项式x2+kxy+9y2可以分解成(x-3y)2,x2+kxy+9y2=(x-3y)2=x2-6xy+9y2.k=-6.故答案为:-6.【点睛】此题主要考查了公式法分解因式,正确运用乘法公式分解因式是解题关键.9、3【分析】将多项式多项式a2+b2+c2abbcac分解成(ab)2+(ac)2+(bc)2,再把a,b,c代入可求.【详解】解:;a2+b2+c2abbcac(2a2+2b2+2c22ab2ac2bc)(ab)2+(ac)2+(bc)2,a2+b2+c2abbcac(1+4+1)3;故答案为:3.【点睛】本题考查了因式分解的应用,关键是将多项式配成完全平方形式.10、【分析】根据分解因式的步骤

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论