精品试卷:浙教版初中数学七年级下册第四章因式分解章节练习试题(含答案解析)_第1页
精品试卷:浙教版初中数学七年级下册第四章因式分解章节练习试题(含答案解析)_第2页
精品试卷:浙教版初中数学七年级下册第四章因式分解章节练习试题(含答案解析)_第3页
精品试卷:浙教版初中数学七年级下册第四章因式分解章节练习试题(含答案解析)_第4页
精品试卷:浙教版初中数学七年级下册第四章因式分解章节练习试题(含答案解析)_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、初中数学七年级下册第四章因式分解章节练习(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、多项式可以因式分解成,则的值是( )A.-1B.1C.-5D.52、下列分解因式正确的是()A.100p225q2(10p+5q)(10p5q)B.x2+x6(x3)(x+2)C.4m2+n2(2m+n)(2mn)D.3、下列分解因式正确的是()A.B.C.D.4、已知,则的值是( )A.6B.6C.1D.15、下列分解因式中,x2+2xy+x=x(x+2y);x2+4x+4=(x+2)2;x2+y2=(

2、x+y)(xy).正确的个数为()A.3B.2C.1D.06、下列因式分解正确的是()A.x24(x+4)(x4)B.4a28aa(4a8)C.a2+2a+2(a+1)2+1D.x22x+1(x1)27、下列等式中,从左到右是因式分解的是( )A.B.C.D.8、多项式的因式为( )A.B.C.D.以上都是9、若a2-b2=4,a-b=2,则a+b的值为( )A.- B. C.1D.210、下列各式中,能用完全平方公式分解因式的是()A.B.C.D. 11、下列各式中,不能用完全平方公式分解的个数为( );.A.1个B.2个C.3个D.4个12、下列多项式:;.能用公式法分解因式的是( )A.

3、B.C.D.13、多项式的公因式是()A.x2y3B.x4y5C.4x4y5D.4x2y314、下列关于2300+(2)301的计算结果正确的是()A.2300+(2)301230023012300223002300B.2300+(2)3012300230121C.2300+(2)301(2)300+(2)301(2)601D.2300+(2)3012300+2301260115、下列各式从左边到右边的变形,是因式分解且分解正确的是 ( )A.(a+1)(a-1)=a2-1B.ab+ac+1=a(b+c)+1C. a2-2a-3=(a-1)(a-3)D.a2-8a+16=(a-4)2二、填空题

4、(10小题,每小题4分,共计40分)1、因式分解:_2、分解因式:2x3+12x2y+18xy2_3、分解因式:9a2+b2_4、如果(a+ )2a2+6ab+9b2,那么括号内可以填入的代数式是 _(只需填写一个)5、小明将(2020 x+2021)2展开后得到a1x2+b1x+c1;小红将(2021x2020)2展开后得到a2x2+b2x+c2,若两人计算过程无误,则c1c2的值是_6、若,则_7、下列多项式:;,它们的公因式是_8、若多项式9x2+kxy+4y2能用完全平方公式进行因式分解,则k_9、若,且,则_10、分解因式:_三、解答题(3小题,每小题5分,共计15分)1、(画图痕迹

5、用黑色签字笔加粗加黑)如图,正方形纸片A类,B类和长方形纸片C类若干张,(1)请你选取适当数量的三种纸片,拼成一个长为、宽为的长方形,画出拼好后的图形观察拼图共用_张A类纸片,_张B类纸片,_张C类纸片,通过面积计算可以发现=_(2)请你用这三类卡片拼出面积为的长方形,画出拼好后的图形观察拼图共用_张A类纸片,_张B类纸片,_张C类纸片,通过面积计算可以发现_利用拼图,把下列多项式因式分解=_;_2、因式分解:x2+4y2+4xy13、因式分解:-参考答案-一、单选题1、D【分析】先提公因式,然后将原多项式因式分解,可求出和 的值,即可计算求得答案.【详解】解:,.故选:.【点睛】本题考查了提

6、公因式法分解因式,准确找到公因式是解题的关键.2、C【分析】根据因式分解的各种方法逐个判断即可.【详解】解:A.,故本选项不符合题意;B.,故本选项不符合题意;C.故本选项符合题意;D.,所以,故本选项不符合题意;故选:C.【点睛】此题考查了因式分解的方法,熟练掌握因式分解的有关方法是解题的关键.3、D【分析】本题考查的是提公因式法与公式法的综合运用,根据分解因式的定义,以及完全平方公式即可作出解答.【详解】A. m2+n2,不能因式分解; B.16m24n2=4(4m2n)(4m+2n),原因式分解错误; C. a33a2+a=a(a23a+1),原因式分解错误; D.4a24ab+b2=(

7、2ab)2,原因式分解正确.故选:D.【点睛】此题考查了运用提公因式法和公式法进行因式分解,熟练掌握公式法因式分解是解本题的关键.4、B【分析】首先将 变形为,再代入计算即可.【详解】解:, ,故选:B.【点睛】本题考查提公因式法因式分解,解题关键是准确找出公因式,将原式分解因式.5、C【分析】直接利用提取公因式法以及公式法分别分解因式判断即可.【详解】解:x2+2xy+x=x(x+2y+1),故错误;x2+4x+4=(x+2)2,故正确;-x2+y2=(y+x)(y-x),故错误;故选:C.【点睛】本题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.6、D【分析】各式分

8、解得到结果,即可作出判断.【详解】解:A、原式(x+2)(x2),不符合题意;B、原式4a(a2),不符合题意;C、原式不能分解,不符合题意;D、原式(x1)2,符合题意.故选:D.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.7、B【分析】根据因式分解的定义:把一个多项式化成几个整式积的形式,像这样的式子变形叫做这个多项式的因式分解,进行求解即可.【详解】解:A、,不是整式积的形式,不是因式分解,不符而合题意;B、,是因式分解,符合题意;C、,不是乘积的形式,不是因式分解,不符合题意;D、,不是乘积的形式,不是因式分解,不符合题意;故选B.【点睛】本题

9、主要考查了因式分解的定义,熟知定义是解题的关键.8、D【分析】将先提公因式因式分解,然后运用平方差公式因式分解即可.【详解】解:,、,均为的因式,故选:D.【点睛】本题考查了提公因式法因式分解以及运用平方差公式因式分解,熟练运用公式法因式分解是解本题的关键.9、D【分析】平方差公式为(a+b)(a-b)=a2-b2可以得到a2-b2=(a+b)(a-b),把已知条件代入可以求得(a+b)的值.【详解】a2- b2=4,a- b=1,由a2-b2=(a+b)(a-b)得到,4=2(a+b),a+b=2,故选:D.【点睛】本题考查了平方差公式,熟练掌握平方差公式是解题的关键.公式:(a+b)(a-

10、b)=a2-b2.10、D【分析】根据完全平方公式法分解因式,即可求解.【详解】解:A、不能用完全平方公式因式分解,故本选项不符合题意;B、不能用完全平方公式因式分解,故本选项不符合题意;C、不能用完全平方公式因式分解,故本选项不符合题意;D、能用完全平方公式因式分解,故本选项符合题意;故选:D【点睛】本题主要考查了完全平方公式法分解因式,熟练掌握 是解题的关键.11、C【分析】分别利用完全平方公式分解因式得出即可.【详解】解:x2-10 x+25=(x-5)2,不符合题意;4a2+4a-1不能用完全平方公式分解;x2-2x-1不能用完全平方公式分解;m2+m=-(m2-m+)=-(m-)2,

11、不符合题意;4x4x2+不能用完全平方公式分解.故选:C.【点睛】此题主要考查了完全平方公式的应用,熟练掌握完全平方公式的形式是解题关键.12、C【分析】根据公式法的特点即可分别求解.【详解】不能用公式法因式分解;,可以用公式法因式分解;不能用公式法因式分解;=,能用公式法因式分解;=,能用公式法因式分解.能用公式法分解因式的是故选C.【点睛】此题主要考查因式分解,解题的关键是熟知乘方公式的特点.13、D【分析】根据公因式的意义,将原式写成含有公因式乘积的形式即可.【详解】解:因为,所以的公因式为,故选:D.【点睛】本题考查了公因式,解题的关键是理解公因式的意义是得出正确答案的前提,将各个项写

12、成含有公因式积的形式.14、A【分析】直接利用积的乘方运算法则将原式变形,再利用提取公因式法分解因式计算得出答案.【详解】2300+(2)301230023012300223002300.故选:A.【点睛】此题主要考查了提取公因式法分解因式以及有理数的混合运算,正确将原式变形是解题关键.15、D【分析】分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.【详解】解:A、是多项式乘法,不是因式分解,原变形错误,故此选项不符合题意;B、右边不是整式的积的形式,不是因式分解,原变形错误,故此选项不符合题意;C、a2-2a-3=(a+1)(a

13、-3)分解时出现符号错误,原变形错误,故此选项不符合题意;D、符合因式分解的定义,是因式分解,原变形正确,故此选项符合题意.故选:D.【点睛】本题考查了因式分解.解题的关键是理解因式分解的定义:把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,然后进行正确的因式分解.二、填空题1、【分析】先提取公因式3,再对余下的多项式利用平方差公式继续分解.【详解】解:3x2-3y2=3(x2-y2)=3(x+y)(x-y).故答案为:3(x+y)(x-y).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分

14、解要彻底,直到不能分解为止.2、2x(x+3y)2【分析】首先提取公因式2x,再利用完全平方公式分解因式得出答案.【详解】解:原式2x(x2+6xy+9y2)2x(x+3y)2.故答案为:2x(x+3y)2.【点睛】此题考查的是因式分解,掌握提公因式法和公式法是解题的关键.3、 (b+3a)(b-3a)【分析】原式利用平方差公式分解即可.【详解】解:-9a2+b2= b2-9a2=(b+3a)(b-3a).故答案为:(b+3a)(b-3a)【点睛】本题考查了运用平方差公式分解因式,熟练掌握平方差公式的结构特征是解本题的关键.4、3b【分析】先根据展开式三项进行公式化变形,利用因式分解公式得出因

15、式分解结果,再反过来即可得解.【详解】解:a2+6ab+9b2= a2+2a3b+(3b)2=(a+3b)2,(a+3b )2a2+6ab+9b2,故答案为3b.【点睛】本题考查多项式的乘法公式,可反过来用因式分解公式来求解是解题关键.5、4041【分析】根据(2020 x+2021)2=(2020 x)2+220212020 x+20212得到c120212,同理可得 c220202,所以c1-c2=20212-20202,进而得出结论.【详解】解:(2020 x+2021)2=(2020 x)2+220212020 x+20212, c1=20212, (2021x-2020)2=(202

16、1x)2-220202021x+20202, c2=20202, c1-c2=20212-20202=(2021+2020)(2021-2020)=4041, 故答案为:4041.【点睛】本题主要考查了完全平方公式,平方差公式,解决本题的关键是要熟悉公式的结构特点.6、15【分析】将原式首先提取公因式xy,进而分解因式,将已知代入求出即可.【详解】解:x2y5,xy3, .故答案为:15.【点睛】此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.7、【分析】将各多项式分解因式,即可得到它们的公因式.【详解】解:, ,它们的公因式是,故答案为:.【点睛】此题考查多项式的因式分解方法,公

17、因式的定义,熟练掌握多项式的因式分解方法是解题的关键.8、12.【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k的值.【详解】解:9x2+kxy+4y2(3x)2+kxy +(2y)2,kxy23x2y12xy,解得k12.故答案为:12.【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.9、5【分析】将m2-n2按平方差公式展开,再将m-n的值整体代入,即可求出m+n的值.【详解】解:,.故答案为:5.【点睛】本题主要考查平方差公式,解题的关键是熟知平方差公式的逆用.10、【分析】根据分解因式的步骤,先提取公因式再利用完全平方公式分解即可.【详解】解:,故答案为: .【点睛】本题主要考查了因式分解,熟悉掌握因式分解的方法是解题的关键.三、解答题1、见解析;1,2,3,;(2)见解析;3,1,4,;【分析】(1)由如图要拼成一个长为、宽为的长方形,即可得出答案;利用面积公式可得出这个;(2)根据题意画出相应图形;利用面积

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论