二次函数应用利润_第1页
二次函数应用利润_第2页
二次函数应用利润_第3页
二次函数应用利润_第4页
二次函数应用利润_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、关于二次函数的应用利润第1页,共21页,2022年,5月20日,18点1分,星期四1.什么样的函数叫二次函数?形如y=ax2+bx+c(a、b、c是常数,a0)的函数叫二次函数2.如何求二次函数y=ax2+bx+c(a0)的最值?有哪几种方法?写出求二次函数最值的公式公式法求最值第2页,共21页,2022年,5月20日,18点1分,星期四课前练习 1.当x= 时,二次函数y=x22x2 有最大值. 2.已知二次函数y=x26xm的最小值为1,那 么m的值为 . 110第3页,共21页,2022年,5月20日,18点1分,星期四问题:用总长为60米的篱笆围成矩形场地,矩形面积S随矩形一边长x的变

2、化而变化。当x是多少时,场地的面积最大?解:根据题意 ,得s=x(30-x)=-x2+30 x=-(x-15)2+225当x=15时,y最大=225答:当x=15时,场地的面积最大。第4页,共21页,2022年,5月20日,18点1分,星期四 在日常生活中存在着许许多多的与数学知识有关的实际问题。如繁华的商业城中很多人在买卖东西。 如果你去买商品,你会选买哪一家的?如果你是商场经理,如何定价才能使商场获得最大利润呢?第5页,共21页,2022年,5月20日,18点1分,星期四一、自主探究 问题1.已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。据市场调查反映:如果调整价格

3、,每涨价1元,每星期要少卖出10件。要想获得6090元的利润,该商品应定价为多少元?第6页,共21页,2022年,5月20日,18点1分,星期四 已知某商品的进价为每件40元,售价是每件 60元,每星期可卖出300件。市场调查反映:如果调整价格,每涨价1元,每星期要少卖出10件。要想获得6090元的利润,该商品应定价为多少元?分析:没调价之前商场一周的利润为 元;设销售单价上调了x元,那么每件商品的利润可表示为 元,每周的销售量可表示为 件,一周的利润可表示为 元,要想获得6090元利润可列方程 。 6000 20+x300-10 x (20+x)( 300-10 x) (20+x)( 300

4、-10 x) =6090 第7页,共21页,2022年,5月20日,18点1分,星期四 已知某商品的进价为每件40元,售价是每件 60元,每星期可卖出300件。市场调查反映:如果调整价格,每涨价1元,每星期要少卖出10件。要想获得6090元的利润,该商品应定价为多少元? 若设销售单价x元,那么每件商品的利润可表示为 元,每周的销售量可表示 为 件,一周的利润可表示 为 元,要想获得6090元利润可列方程 . x-40300-10(x-60)(x-40)300-10(x-60) (x-40)300-10(x-60)=6090第8页,共21页,2022年,5月20日,18点1分,星期四问题2.已知

5、某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件。该商品应定价为多少元时,商场能获得最大利润?第9页,共21页,2022年,5月20日,18点1分,星期四解:设每件涨价为x元时获得的总利润为y元. =-10(x-5)2-25-600 =-10(x-5)2+6250当x=5时,y的最大值是6250.定价:60+5=65(元)(0 x30)怎样确定x的取值范围y =(60-40+x)(300-10 x) =(20+x)(300-10 x) =-10 x2+100 x+6000 =-10(x2-10 x-600)第10页,共

6、21页,2022年,5月20日,18点1分,星期四二、自主合作问题2.已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件;每降价一元,每星期可多卖出20件。如何定价才能使利润最大?第11页,共21页,2022年,5月20日,18点1分,星期四解:设每件降价x元时的总利润为y元.y=(60-40-x)(300+20 x) =(20-x)(300+20 x) =-20 x2+100 x+6000 =-20(x2-5x-300) =-20(x-2.5)2+6125 (0 x20)所以定价为60-2.5=57.5时利润

7、最大,最大值为6125元. 答:综合以上两种情况,定价为65元时可 获得最大利润为6250元.由(1)(2)的讨论及现在的销售情况,你知道应该如何定价能使利润最大了吗?怎样确定x的取值范围第12页,共21页,2022年,5月20日,18点1分,星期四三、自主展示 (09中考)某超市经销一种销售成本为每件40元的商品据市场调查分析,如果按每件50元销售,一周能售出500件;若销售单价每涨1元,每周销量就减少10件设销售单价为x元(x50),一周的销售量为y件(1)写出y与x的函数关系式(标明x的取值范围)解:(1)y=50010(x50) =1000-10 x (50 x100)第13页,共21

8、页,2022年,5月20日,18点1分,星期四三、自主展示(09中考)某超市经销一种销售成本为每件40元的商品据市场调查分析,如果按每件50元销售,一周能售出500件;若销售单价每涨1元,每周销量就减少10件设销售单价为x元(x50),一周的销售量为y件(2)设一周的销售利润为S,写出S与x的函数关系式,并确定当单价在什么范围内变化时,利润随着单价的增大而增大?当50 x70时,利润随着单价的增大而增大. 解:(2)S=(x40)(1000-10 x) =10 x21400 x-40000=10(x70)2+9000第14页,共21页,2022年,5月20日,18点1分,星期四三、自主展示(0

9、9中考)某超市经销一种销售成本为每件40元的商品据市场调查分析,如果按每件50元销售,一周能售出500件;若销售单价每涨1元,每周销量就减少10件设销售单价为x元(x50),一周的销售量为y件(3)在超市对该种商品投入不超过10000元的情况下,使得一周销售利润达到8000元,销售单价应定为多少?第15页,共21页,2022年,5月20日,18点1分,星期四三、自主展示(3)在超市对该种商品投入不超过10000元的情况下,使得一周销售利润达到8000元,销售单价应定为多少? 所以销售单价应定为80元,才能使一周销售利润达到8000元的同时,投入不超过10000 元解:(3)10 x21400

10、x-40000=8000解得:x1=60,x2=80当x=60时,成本=4050010(6050) =1600010000不符要求,舍去.当x=80时,成本=4050010(8050) =800010000符合要求第16页,共21页,2022年,5月20日,18点1分,星期四四、自主拓展 在上题中,若商场规定试销期间获利不得低于40%又不得高于60%,则销售单价定为多少时,商场可获得最大利润?最大利润是多少?问题2.已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件;每降价一元,每星期可多卖出20件。如何定价才

11、能使利润最大?第17页,共21页,2022年,5月20日,18点1分,星期四解:设商品售价为x元,则x的取值范围 为40(140%)x40(160%) 即56x64若涨价促销,则利润 y=(x-40)300-10(x-60) =(x-40)(900-10 x) =-10 x2-1300 x-36000 =-10(x-65)2-4225-36000 =-10(x-65)2+6250 60 x64 由函数图像或增减性知当x=64时y最大,最大值为6240元若降价促销,则利润y=(x-40)300+20(60-x) =(x-40)(1500-20 x) =-20(x2-115x+3000) =-20

12、(x-57.5)2+6125 56x60 由函数图像或增减性知 当x=57.5时y最大,最大 值为6125元综上x=64时y最大,最大值为6240元第18页,共21页,2022年,5月20日,18点1分,星期四五、自主评价1.谈谈这节课你的收获2.总结解这类最大利润问题的一般步骤(1)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;(2)在自变量的取值范围内,运用公式法或通过配方求出二次函数的最大值或最小值。第19页,共21页,2022年,5月20日,18点1分,星期四 利达销售店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理)。当每吨售价为260元时,月销售量45吨,该经销店为提高经营利润,准备采取降价的方式进行促销,经市场调查发现,当每吨售价每下降10元时,月销售量就会增加7.5吨,综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其他费用100元,设每吨材料售价为x元,该

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论