最新浙教版初中数学七年级下册第四章因式分解月度测试试题(精选)_第1页
最新浙教版初中数学七年级下册第四章因式分解月度测试试题(精选)_第2页
最新浙教版初中数学七年级下册第四章因式分解月度测试试题(精选)_第3页
最新浙教版初中数学七年级下册第四章因式分解月度测试试题(精选)_第4页
最新浙教版初中数学七年级下册第四章因式分解月度测试试题(精选)_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、初中数学七年级下册第四章因式分解月度测试(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、下列分解因式正确的是()A.100p225q2(10p+5q)(10p5q)B.x2+x6(x3)(x+2)C.4m2+n2(2m+n)(2mn)D.2、小明是一名密码翻译爱好者,在他的密码手册中有这样一条信息:,分别对应下列六个字:勤,博,奋,学,自,主,现将因式分解,结果呈现的密码信息应是( )A.勤奋博学B.博学自主C.自主勤奋D.勤奋自主3、下列各式由左边到右边的变形,是因式分解的是( )A.B.

2、C.D.4、下列等式从左到右的变形,属于因式分解的是()A.m (a+b)ma+mbB.x2+2x+1x(x+2)+1C.x2+xx2(1+)D.x29(x+3)(x3)5、下列等式中,从左到右的变形是因式分解的是()A.2x(x1)2x22xB.4m2n2(4m+n)(4mn)C.x2+2xx(x2)D.x22x+3x(x2)+36、下列四个式子从左到右的变形是因式分解的为()A.(xy)(xy)y2x2B.a2+2ab+b21(a+b)21C.x481y4(x2+9y2)(x+3y)(x3y)D.(a2+2a)28(a2+2a)+12(a2+2a)(a2+2a8)+127、下列多项式中,能

3、用平方差公式进行因式分解的是( )A.B.C.D.8、下列各式中,能用完全平方公式因式分解的是( )A.B.C.D.9、把代数式ax28ax+16a分解因式,下列结果中正确的是()A.a(x+4)2B.a(x4)2C.a(x8)2D.a(x+4)(x4)10、下列等式从左到右的变形,属于因式分解的是()A.x2+2x1(x1)2B.(a+b)(ab)a2b2C.x2+4x+4(x+2)2D.ax2aa(x21)11、下列因式分解正确的是( )A.3ab26ab3a(b22b)B.x(ab)y(ba)(ab)(xy)C.a2+2ab4b2(a2b)2D.a2+a(2a1)212、对于任何整数a,

4、多项式都能( )A.被3整除B.被4整除C.被5整除D.被a整除13、下列各式中与b2a2相等的是()A.(ba)2B.(a+b)(ab)C.(a+b)(a+b)D.(a+b)(ab)14、下列因式分解正确的是( )A.3p2-3q2=(3p+3q)(p-q)B.m4-1=(m2+1)(m2-1)C.2p+2q+1=2(p+q)+1D.m2-4m+4=(m-2)215、下列各式中不能用平方差公式分解的是( )A.B.C.D.二、填空题(10小题,每小题4分,共计40分)1、分解因式:xy3x+y3_2、若多项式x2+ax+b可分解为(x+1)(x+4),则a_,b_3、因式分解:_4、多项式各

5、项的公因式是_5、如果两个多项式有公因式,则称这两个多项式为关联多项式,若x225与(xb)2为关联多项式,则b_;若(x1)(x2)与A为关联多项式,且A为一次多项式,当Ax26x2不含常数项时,则A为_6、分解因式:_7、已知a2b5,则代数式a24ab4b25的值是_8、分解因式:_9、若,则的值是_10、分解因式:_三、解答题(3小题,每小题5分,共计15分)1、因式分解:6m3n+4mn22mn2、因式分解:3、因式分解:(1)2m24mn+2n2;(2)x41-参考答案-一、单选题1、C【分析】根据因式分解的各种方法逐个判断即可.【详解】解:A.,故本选项不符合题意;B.,故本选项

6、不符合题意;C.故本选项符合题意;D.,所以,故本选项不符合题意;故选:C.【点睛】此题考查了因式分解的方法,熟练掌握因式分解的有关方法是解题的关键.2、A【分析】将式子先提取公因式再用平方差公式因式分解可得:(x2-y2)a2-(x2-y2)b2=(x2-y2)(a2-b2)=(x+y)(x-y)(a+b)(a-b),再结合已知即可求解.【详解】解:(x2-y2)a2-(x2-y2)b2=(x2-y2)(a2-b2)=(x+y)(x-y)(a+b)(a-b),由已知可得:勤奋博学,故选:A.【点睛】本题考查了因式分解的应用;将已知式子进行因式分解,再由题意求是解题的关键.3、D【分析】根据因

7、式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A、是整式的乘法,故不符合;B、没把一个多项式转化成几个整式积的形式,故不符合;C、没把一个多项式转化成几个整式积的形式,故不符合;D、把一个多项式转化成几个整式积的形式,故符合;故选:D.【点睛】本题考查因式分解的定义;掌握因式分解的定义和因式分解的等式的基本形式是解题的关键.4、D【分析】根据因式分解的定义是把一个多项式化为几个整式的积的形式的变形,可得答案.【详解】解:A、是整式的乘法,不是因式分解,故此选项不符合题意;B、没把一个多项式化为几个整式的积的形式,故此选项不符合题意;C、因为的分母中含有字母,不是整式,所以没

8、把一个多项式化为几个整式的积的形式,故此选项不符合题意;D、把一个多项式化为几个整式的积的形式,故此选项符合题意;故选:D.【点睛】本题主要考查了因式分解的定义,熟练掌握因式分解是把一个多项式化为几个整式的积的形式的变形是解题的关键.5、C【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据定义即可进行判断.【详解】解:A.2x(x1)2x22x,原变形是整式乘法,不是因式分解,故此选项不符合题意;B.4m2n2(2m+n)(2mn),故此选项不符合题意;C.x2+2xx(x2),把一个多项式化为几个整式的积的形式,原变形是因式分解,故此选项符合题

9、意;D.x22x+3x(x2)+3,等式的右边不是几个整式的积的形式,不是因式分解,故此选项不符合题意;故选:C.【点睛】本题主要考查了因式分解的定义.解题的关键是掌握因式分解的定义,要注意因式分解是整式的变形,并且因式分解与整式的乘法互为逆运算.6、C【分析】根据因式分解的定义判断即可.把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.【详解】解:A选项,B,D选项,等号右边都不是积的形式,所以不是因式分解,不符合题意;C选项,符合因式分解的定义,符合题意;故选:C.【点睛】本题考查了因式分解的定义,掌握因式分解的定义是解题的关键.7、D【分析】根据平方差

10、公式的结构特点,两个平方项,并且符号相反,对各选项分析判断后利用排除法求解.【详解】解:A、a22abb2是三项,不能用平方差公式进行因式分解.B、a2b2两平方项符号相同,不能用平方差公式进行因式分解;C、a2b2两平方项符号相同,不能用平方差公式进行因式分解;D、a2b2符合平方差公式的特点,能用平方差公式进行因式分解;故选:D.【点睛】本题考查平方差公式进行因式分解,熟记平方差公式的结构特点是求解的关键.平方差公式:a2b2(ab)(ab).8、C【分析】根据完全平方公式的特点判断即可;【详解】不能用完全平方公式,故A不符合题意;不能用完全平方公式,故B不符合题意;,能用完全平方公式,故

11、C符合题意;不能用完全平方公式,故D不符合题意;故答案选C.【点睛】本题主要考查了因式分解公式法的判断,准确判断是解题的关键.9、B【分析】直接提取公因式a,再利用完全平方公式分解因式即可.【详解】解:ax28ax+16aa(x28x+16)a(x4)2.故选B.【点睛】本题主要考查了分解因式,解题的关键在于能够熟练掌握分解因式的方法.10、C【分析】根据因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解分别进行判断,即可得出答案.【详解】A. x2+2x1(x1)2,故A不符合题意;B. a2b2=(a+b)(ab),故B不符合题意;C. x2+4x+4(x

12、+2)2,是因式分解,故C符合题意;D. ax2aa(x21)=a(x+1)(x-1),分解不完全,故D不符合题意;故选:C.【点睛】本题考查了因式分解的意义,解题的关键是正确理解因式分解的意义.11、D【分析】根据因式分解的定义及方法即可得出答案.【详解】A:根据因式分解的定义,每个因式要分解彻底,由3ab26ab3a(b22b)中因式b22b分解不彻底,故A不符合题意.B:将x(ab)y(ba)变形为x(ab)+y(ab),再提取公因式,得x(ab)y(ba)x(ab)+y(ab)(ab)(x+y),故B不符合题意.C:形如a22ab+b2是完全平方式,a2+2ab4b2不是完全平方式,也

13、没有公因式,不可进行因式分解,故C不符合题意.D:先将变形为,再运用公式法进行分解,得,故D符合题意.故答案选择D.【点睛】本题考查的是因式分解,注意因式分解的定义把一个多项式拆解成几个单项式乘积的形式.12、B【分析】多项式利用完全平方公式分解,即可做出判断.【详解】解:原式则对于任何整数a,多项式都能被4整除.故选:B.【点睛】此题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.13、C【分析】根据平方差公式直接把b2a2分解即可.【详解】解:b2a2(ba)(b+a),故选:C.【点睛】此题主要考查了公式法分解因式,关键是掌握平方差公式.平方差公式:a2-b2=(a+b)

14、(a-b).14、D【分析】利用提取公因式法、平方差公式和完全平方公式法分别因式分解分析得出答案.【详解】解:选项A:3p23q23(p2q2)3(pq)(pq),不符合题意;选项B:m41(m21)(m21)m41(m21)(m1)(m1),不符合题意;选项C:2p2q1不能进行因式分解,不符合题意;选项D:m24m4(m2)2,符合题意.故选:D.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15、C【分析】分别利用平方差公式分解因式进而得出答案.【详解】解:A、(2+x)(2x),可以用平方差公式分解因式,故此选项错误;B、(y+x)(yx),可以

15、用平方差公式分解因式,故此选项错误;C、,不可以用平方差公式分解因式,故此选项正确;D、(1+2x)(12x),可以用平方差公式分解因式,故此选项错误;故选:C.【点睛】此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.二、填空题1、(y3)(x+1)【分析】直接利用分组分解法、提取公因式法分解因式得出答案.【详解】解:xy3x+y3x(y3)+(y3)(y3)(x+1).故答案为:(y3)(x+1).【点睛】本题主要考查了利用提取公因式的方法分解因式,解题的关键在于能够熟练掌握提公因式的方法分解因式.2、5 4 【分析】把(x+1)(x+4)展开,合并同类项,可确定a、b的值.【详

16、解】解:(x+1)(x+4),=,=,;故答案为:5,4.【点睛】本题考查了因式分解和多项式乘多项式,解题关键是熟练运用多项式的乘法法则进行计算,取得字母的值.3、【分析】先提公因式,再用平方差公式分解即可.【详解】故答案为:【点睛】本题综合考查了提公因式法和公式法分解因式,一般地,因式分解的步骤是:先考虑提公因式;其次考虑用公式法.另外,因式分解要分解到再也不能分解为止.4、4xy【分析】根据公因式的定义,找出系数的最大公约数,相同字母的最低指数次幂,然后即可确定公因式.【详解】解:多项式系数的最大公约数是4,相同字母的最低指数次幂是x和y,该多项式的公因式为4xy,故答案为:4xy.【点睛

17、】本题考查多项式的公因式,掌握多项式每项公因式的求法是解题的关键.5、5 -2x-2或-x-2 【分析】先将x2-25因式分解,再根据关联多项式的定义分情况求出b;再分A=k(x+1)=kx+k或A=k(x+2)=kx+2k两种情况,根据不含常数项.【详解】解:x2-25=(x+5)(x-5),x2-25的公因式为x+5、x-5.若x2-25与(x+b)2为关联多形式,则x+b=x+5或x+b=x-5.当x+b=x+5时,b=5.当x+b=x-5时,b=-5.综上:b=5.(x+1)(x+2)与A为关联多项式,且A为一次多项式,A=k(x+1)=kx+k或A=k(x+2)=kx+2k,k为整数

18、.当A=k(x+1)=kx+k(k为整数)时,若A+x2-6x+2不含常数项,则k+2=0,即k=-2.A=-2(x+1)=-2x-2.当A=k(x+2)=kx+2k(k为整数)时,若A+x2-6x+2不含常数项,则2k+2=0,即k=-1.A=-x-2.综上,A=-2x-2或A=-x-2.故答案为:5,-2x-2或-x-2.【点睛】本题主要考查多项式、公因式,熟练掌握多项式、公因式的意义是解决本题的关键.6、【分析】根据十字相乘法分解因式,即可得到答案.【详解】故答案为:.【点睛】本题考查了分解因式的知识;解题的关键是熟练掌握十字相乘法分解因式的性质,从而完成求解.7、20【分析】将a=2b-5变为a-2b=-5,再根据完全平方公式分解a2-4ab+4b2-5=(a-2b)2-5,代入求解.【详解】解:a=2b-5,a-2b=-5,a2-4ab+4b2-5=(a-2b)2-5=(-5)2-5=20.故答案为:20.【点睛】此题考查的是代数式求值,掌握完全平方公式是解此题的关键.8、#【分析】根据完全平方公式进行因式分解即可.【详解】解:原式,故答案为:.【点睛】本题考查了根据完全平方公式因式分解性,掌握完全平方公式是解题的关键.9、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论