版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Runge-Kuttua方法和matlab原理龙格库塔法(Runge-Kutta)数值分析中,龙格库塔法(Runge-Kutta)是用于模拟常微分方程的解的重要的一类隐式或显式迭代法。这些技术由数学家卡尔龙格和马丁威尔海姆库塔于1900年左右发明。经典四阶龙格库塔法龙格库塔法的家族中的一个成员如此常用,以至于经常被称为“RK4”或者就是“龙格库塔法”。四阶Runge-Kutta方法这样,下一个值(yn+1)由现在的值(yn)加上时间间隔(h)和一个估算的斜率的乘积决定。该斜率是以下斜率的加权平均:k1是时间段开始时的斜率;k2是时间段中点的斜率,通过欧拉法采用斜率 k1 来决定 y在点 tn
2、+ h/2的值;k3也是中点的斜率,但是这次采用斜率 k2决定 y值;k4是时间段终点的斜率,其 y值用 k3 决定。当四个斜率取平均时,中点的斜率有更大的权值:误差分析:注意上述公式对于标量或者向量函数(y可以是向量)都适用。 四阶R-K方法的每一步需要计算四次函数值f,可以证明其局部截断误差为O(h5).R-K(高阶)方法不唯一,选择不同的参数能得到不同的R-K公式注意的问题R-K方法的推导是基于Taylor展开法,因而要求解具有较好的光滑性,如果光滑性较差精度可能不如改进Euler方法,最好采用低阶算法而将步长h 取小。Runge-Kutta法的主要运算在于计算 Ki 的值,即计算 f
3、的值。计算量与可达到的最高精度阶数的关系:753可达到的最高精度642每步须算Ki 的个数四阶Runge-Kutta方法的MATLAB实现原理:四阶R-K方法实现开始输出x1,y1结束YNfunction ff=rk(yy,x0,y0,h,a,b)%yy为y的导函数,x0,y0,为初值,h为步长,a,b为区间c=(b-a)/h+1;i1=1; %c为迭代步数;i1为迭代步数累加值y=y0;z=zeros(c,6); %z生成c行,6列的零矩阵存放结果;%每行存放c次迭代结果,每列分别存放k1k4及y的结果不断迭代运算:for x=a:h:b if i1=c k1=feval(yy,x,y);
4、k2=feval(yy,x+h/2,y+(h*k1)/2); k3=feval(yy,x+h/2,y+(h*k2)/2); k4=feval(yy,x+h,y+h*k3); y=y+(h/6)*(k1+2*k2+2*k3+k4); z(i1,1)=x;z(i1,2)=k1;z(i1,3)=k2;z(i1,4)=k3;z(i1,5)=k4;z(i1,6)=y; i1=i1+1; endend例4解例 题 4xnYn|yn-y(xn)|R-K3误差y(xn)0.11.0959 0.00051.095440.45e-41.09540.21.1841 0.0009 1.183220.17e-41.18
5、320.31.2662 0.0013 1.264910.15e-41.26490.41.3434 0.0018 1.341650.48e-41.34160.51.4164 0.0022 1.414220.25e-41.41420.61.4860 0.0028 1.483260.55e-41.48320.71.5525 0.0033 1.549210.14e-41.54920.81.6165 0.0040 1.6124780.21e-41.61250.91.6782 0.0049 1.673350.54e-41.67331.01.7379 0.0058 1.732090.06e-41.7321改进Euler法一步需要计算两个函数值(h=0.1)四阶Runge-Kutta方法一步需要计算四个函数值(h=0.2)总计算量大致相当,但四阶Runge-Kutta方法精度更高五、变步长Runge-Kutta方法从每一步看,步长越小,截断误差越小;但随着步长的缩小,在一定求解范围内所要完成的步数就会增加,步数的增加不但引起计算量的增大,而且可能导致舍入误差的严重积累,因此需要选择步长如何衡量和检验计算结
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年中山市博爱小学教师招聘备考题库完整参考答案详解
- 2025年义安区检察院公开招聘编外聘用人员备考题库及一套答案详解
- 2026年中泰证券股份有限公司湖南分公司招聘备考题库及答案详解参考
- 2026年三亚崖州湾科技城控股集团有限公司招聘备考题库及参考答案详解1套
- 2026年大理州苍洱公证处公开选调事业单位工作人员备考题库带答案详解
- 2026年天津美术学院第一批公开招聘硕士研究生及以上工作人员备考题库完整参考答案详解
- 2026年宁波东方人力资源服务有限公司(拟派遣到宁波大学)非事业编制人员招聘备考题库及一套答案详解
- 2026年中国医学科学院医学实验动物研究所第三批公开招聘工作人员备考题库及完整答案详解1套
- 2026年中旅保险经纪有限公司招聘备考题库附答案详解
- 2026年上海市青浦区教育系统招聘教师备考题库第三轮及一套参考答案详解
- 高校辅导员素质能力大赛题库
- 《质量管理与控制技术基础》第一章 质量管理基础知识
- GB 3836.20-2010爆炸性环境第20部分:设备保护级别(EPL)为Ga级的设备
- BIM技术及BIM施工项目管理课件全套
- SY∕T 5280-2018 原油破乳剂通用技术条件
- 兽药营销课程资源库兽药产品策略课件
- 医院医疗欠费管理办法(医院财务管理制度)
- 宁波大学《通信原理》期末考试试题
- GB∕T 5824-2021 建筑门窗洞口尺寸系列
- 中学生两会模拟提案
- 五年级上册语文试题-武汉市武昌区2019-2020学年期末测试人教部编版(图片版有答案)
评论
0/150
提交评论