




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、数系的扩充与复数的引入 复 习 课第三章一、本章知识结构虚数的引入复 数复数的表示复数的运算代数表示几何表示代数运算几何意义1、我们为解决负数开方的问题引入虚数单位i,把形如a+bi(a,bR)的数叫做复数,数系由实数集扩充到复数集,实现了数系的扩充。结构图简析结构图简析2、建立复数的概念之后,我们主要研究了复数的代数形式及其运算,复数的几何表示(复平面上的点、向量),复数运算的几何意义。本课复习要点:1复数的有关概念 2复数的代数运算 3复数的几何意义 问题1 设复数z= (m22m3)+(m2+3m+2)i,试求实数m取何值时。(1) z是实数;(2) z是虚数;(3) z是纯虚数;1复数
2、的有关概念 复数a+bi(a, bR)由两部分组成,实数a与b分别称为复数a+bi的实部与虚部。 当b=0时,a+bi就是实数, 当b0时,a+bi是虚数, 其中a=0且b0时称为纯虚数。 背景知识 问题2 设x,yR,并且 (2x1)+xi=y(3y)i,求x,y。解题总结:复数相等的问题转化求方程组的解的问题一种重要的数学思想转化思想2.复数的代数运算问题3 复数 等于( ) A.1i B.1+i C.1+ i D.1iC方法点拨在掌握复数运算法则的基础上注意以下几点1. 的周期性2. 3. 问题4 设z为虚数,且满足 求|z|。解法1 设 z=a+bi (a,bR且b0),解题总结解法入
3、手容易、思路清楚,是我们处理这类问题的常规方法,必须熟练掌握。方法与技巧共轭复数的性质时,z是纯虚数 (1)(2)(3)(4)问题5 已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点位于第二象限,求实数m的取值范围。 3、复数的几何意义复数z=a+bi有序实数对(a,b)直角坐标系中的点Z(a,b)x轴-实轴y轴-虚轴(数)(形)复平面一一对应yxobaZ(a,b)z=a+bi复数的一个几何意义背景知识 复数z=a+bi点Z(a,b) 向量复数的另一几何表示CxyB 0A问题6 如图,已知复平面内一个平行四边形的三个顶点O,A,B对应的复数分别是0, 5+2i , -3+i ,求第四个顶点C对应的复数.解法1向量法解法2几何法平行四边形对角线互相平分如果复数z满足|z+i|+|zi|=2,那么|z+i+1|的最小值是( ) A.1 B. C.2 D.问题7xyo思想方法数形结合回顾总结1.两个复数相等的充要条件是实现把复数问题转化为实数问题的重要途径,也是我们解决有关的方程、不等式问题的重要依据。2.在熟练进行复数运算的同时,掌握一些运算技巧方法,以求快速准确地解答问题。3.复数的几何表示建立
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 委托审计服务合同协议书
- 驾校合同解除协议
- 报名协议合同
- 全款购车协议合同
- 卡车租车协议合同
- 耗材合同空档期补充协议
- 补充协议增加合同当事人
- 违反合同赔偿协议
- 油漆合同协议范本
- 包过协议合同
- 2025年浙江长征职业技术学院高职单招职业技能测试近5年常考版参考题库含答案解析
- 2024-2030年中国便携式超声行业市场发展监测及投资潜力预测报告
- 《习作:我的“自画像”》说课稿-2023-2024学年四年级下册语文统编版001
- 2025无人驾驶视觉识别技术
- 湖南省长沙市雨花区2024-2025学年高一上学期期末考试英语试卷 含解析
- 企业职务犯罪法制讲座
- 【农学课件】瓜类蔬菜栽培
- IATF16949体系推行计划(任务清晰版)
- 2024年军事理论知识全册复习题库及答案
- 2023年江苏皋开投资发展集团有限公司招聘笔试真题
- 任务 混合动力汽车空调系统典型构造与检修
评论
0/150
提交评论