福建省清流一中2023学年高三第三次测评数学试卷(含解析)_第1页
福建省清流一中2023学年高三第三次测评数学试卷(含解析)_第2页
福建省清流一中2023学年高三第三次测评数学试卷(含解析)_第3页
福建省清流一中2023学年高三第三次测评数学试卷(含解析)_第4页
福建省清流一中2023学年高三第三次测评数学试卷(含解析)_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年高考数学模拟测试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1关于函数,有下列三个结论:是的一个周期;在上单调递增;的值域为.则上述结论中,正确的个数为()ABCD2已知集合,集合,则( ).ABCD3在中,点,分别在线段,上,且,则( )ABC4

2、D94已知函数在区间上恰有四个不同的零点,则实数的取值范围是( )ABCD5框图与程序是解决数学问题的重要手段,实际生活中的一些问题在抽象为数学模型之后,可以制作框图,编写程序,得到解决,例如,为了计算一组数据的方差,设计了如图所示的程序框图,其中输入,则图中空白框中应填入( )A,BC,D,6由曲线yx2与曲线y2x所围成的平面图形的面积为()A1BCD7双曲线的渐近线方程为( )ABCD8下列不等式成立的是( )ABCD9下图是民航部门统计的某年春运期间,六个城市售出的往返机票的平均价格(单位元),以及相比于上一年同期价格变化幅度的数据统计图,以下叙述不正确的是( )A深圳的变化幅度最小,

3、北京的平均价格最高B天津的往返机票平均价格变化最大C上海和广州的往返机票平均价格基本相当D相比于上一年同期,其中四个城市的往返机票平均价格在增加10如图,中,点D在BC上,将沿AD旋转得到三棱锥,分别记,与平面ADC所成角为,则,的大小关系是( )ABC,两种情况都存在D存在某一位置使得11集合的真子集的个数为( )A7B8C31D3212已知点P不在直线l、m上,则“过点P可以作无数个平面,使得直线l、m都与这些平面平行”是“直线l、m互相平行”的( )A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13设函数,若对于任意的

4、,2,不等式恒成立,则实数a的取值范围是 14在三棱锥中,三角形为等边三角形,二面角的余弦值为,当三棱锥的体积最大值为时,三棱锥的外接球的表面积为_.15若函数,则使得不等式成立的的取值范围为_.16某城市为了解该市甲、乙两个旅游景点的游客数量情况,随机抽取了这两个景点20天的游客人数,得到如下茎叶图:由此可估计,全年(按360天计算)中,游客人数在内时,甲景点比乙景点多_天.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在中,角的对边分别为,且.(1)求角的大小;(2)若,求边上的高.18(12分)已知抛物线C:x24py(p为大于2的质数)的焦点为F,过点F且

5、斜率为k(k0)的直线交C于A,B两点,线段AB的垂直平分线交y轴于点E,抛物线C在点A,B处的切线相交于点G.记四边形AEBG的面积为S.(1)求点G的轨迹方程;(2)当点G的横坐标为整数时,S是否为整数?若是,请求出所有满足条件的S的值;若不是,请说明理由.19(12分)已知数列满足(),数列的前项和,(),且,(1)求数列的通项公式:(2)求数列的通项公式(3)设,记是数列的前项和,求正整数,使得对于任意的均有20(12分)已知数列和满足,.()求与;()记数列的前项和为,且,若对,恒成立,求正整数的值.21(12分)我们称n()元有序实数组(,)为n维向量,为该向量的范数.已知n维向量

6、,其中,2,n.记范数为奇数的n维向量的个数为,这个向量的范数之和为.(1)求和的值;(2)当n为偶数时,求,(用n表示).22(10分)已知函数有两个零点.(1)求的取值范围;(2)是否存在实数, 对于符合题意的任意,当 时均有?若存在,求出所有的值;若不存在,请说明理由2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】利用三角函数的性质,逐个判断即可求出【题目详解】因为,所以是的一个周期,正确;因为,所以在上不单调递增,错误;因为,所以是偶函数,又是的一个周期,所以可以只考虑时

7、,的值域当时,在上单调递增,所以,的值域为,错误;综上,正确的个数只有一个,故选B【答案点睛】本题主要考查三角函数的性质应用2、A【答案解析】算出集合A、B及,再求补集即可.【题目详解】由,得,所以,又,所以,故或.故选:A.【答案点睛】本题考查集合的交集、补集运算,考查学生的基本运算能力,是一道基础题.3、B【答案解析】根据题意,分析可得,由余弦定理求得的值,由可得结果.【题目详解】根据题意,则在中,又,则则则则故选:B【答案点睛】此题考查余弦定理和向量的数量积运算,掌握基本概念和公式即可解决,属于简单题目.4、A【答案解析】函数的零点就是方程的解,设,方程可化为,即或,求出的导数,利用导数

8、得出函数的单调性和最值,由此可根据方程解的个数得出的范围【题目详解】由题意得有四个大于的不等实根,记,则上述方程转化为,即,所以或因为,当时,单调递减;当时,单调递增;所以在处取得最小值,最小值为因为,所以有两个符合条件的实数解,故在区间上恰有四个不相等的零点,需且故选:A【答案点睛】本题考查复合函数的零点考查转化与化归思想,函数零点转化为方程的解,方程的解再转化为研究函数的性质,本题考查了学生分析问题解决问题的能力5、A【答案解析】依题意问题是,然后按直到型验证即可.【题目详解】根据题意为了计算7个数的方差,即输出的,观察程序框图可知,应填入,故选:A.【答案点睛】本题考查算法与程序框图,考

9、查推理论证能力以及转化与化归思想,属于基础题.6、B【答案解析】首先求得两曲线的交点坐标,据此可确定积分区间,然后利用定积分的几何意义求解面积值即可.【题目详解】联立方程:可得:,结合定积分的几何意义可知曲线yx2与曲线y2x所围成的平面图形的面积为:.本题选择B选项.【答案点睛】本题主要考查定积分的概念与计算,属于中等题.7、A【答案解析】将双曲线方程化为标准方程为,其渐近线方程为,化简整理即得渐近线方程.【题目详解】双曲线得,则其渐近线方程为,整理得.故选:A【答案点睛】本题主要考查了双曲线的标准方程,双曲线的简单性质的应用.8、D【答案解析】根据指数函数、对数函数、幂函数的单调性和正余弦

10、函数的图象可确定各个选项的正误.【题目详解】对于,错误;对于,在上单调递减,错误;对于,错误;对于,在上单调递增,正确.故选:.【答案点睛】本题考查根据初等函数的单调性比较大小的问题;关键是熟练掌握正余弦函数图象、指数函数、对数函数和幂函数的单调性.9、D【答案解析】根据条形图可折线图所包含的数据对选项逐一分析,由此得出叙述不正确的选项.【题目详解】对于A选项,根据折线图可知深圳的变化幅度最小,根据条形图可知北京的平均价格最高,所以A选项叙述正确.对于B选项,根据折线图可知天津的往返机票平均价格变化最大,所以B选项叙述正确.对于C选项,根据条形图可知上海和广州的往返机票平均价格基本相当,所以C

11、选项叙述正确.对于D选项,根据折线图可知相比于上一年同期,除了深圳外,另外五个城市的往返机票平均价格在增加,故D选项叙述错误.故选:D【答案点睛】本小题主要考查根据条形图和折线图进行数据分析,属于基础题.10、A【答案解析】根据题意作出垂线段,表示出所要求得、角,分别表示出其正弦值进行比较大小,从而判断出角的大小,即可得答案【题目详解】由题可得过点作交于点,过作的垂线,垂足为,则易得,设,则有,可得,;,;,综上可得,故选:【答案点睛】本题考查空间直线与平面所成的角的大小关系,考查三角函数的图象和性质,意在考查学生对这些知识的理解掌握水平11、A【答案解析】计算,再计算真子集个数得到答案.【题

12、目详解】,故真子集个数为:.故选:.【答案点睛】本题考查了集合的真子集个数,意在考查学生的计算能力.12、C【答案解析】根据直线和平面平行的性质,结合充分条件和必要条件的定义进行判断即可【题目详解】点不在直线、上,若直线、互相平行,则过点可以作无数个平面,使得直线、都与这些平面平行,即必要性成立,若过点可以作无数个平面,使得直线、都与这些平面平行,则直线、互相平行成立,反证法证明如下:若直线、互相不平行,则,异面或相交,则过点只能作一个平面同时和两条直线平行,则与条件矛盾,即充分性成立则“过点可以作无数个平面,使得直线、都与这些平面平行”是“直线、互相平行”的充要条件,故选:【答案点睛】本题主

13、要考查充分条件和必要条件的判断,结合空间直线和平面平行的性质是解决本题的关键二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】试题分析:由题意得函数在2,上单调递增,当时在2,上单调递增;当时在上单调递增;在上单调递减,因此实数a的取值范围是考点:函数单调性14、【答案解析】根据题意作出图象,利用三垂线定理找出二面角的平面角,再设出的长,即可求出三棱锥的高,然后利用利用基本不等式即可确定三棱锥的体积最大值,从而得出各棱的长度,最后根据球的几何性质,利用球心距,半径,底面半径之间的关系即可求出三棱锥的外接球的表面积.【题目详解】如图所示:过点作面,垂足为,过点作交于点,连接.则为

14、二面角的平面角的补角,即有.易证面,而三角形为等边三角形, 为的中点.设, .故三棱锥的体积为当且仅当时,即.三点共线.设三棱锥的外接球的球心为,半径为.过点作于,四边形为矩形.则,在中,解得.三棱锥的外接球的表面积为.故答案为:【答案点睛】本题主要考查三棱锥的外接球的表面积的求法,涉及二面角的运用,基本不等式的应用,以及球的几何性质的应用,意在考查学生的直观想象能力,数学运算能力和逻辑推理能力,属于较难题.15、【答案解析】分,两种情况代入讨论即可求解.【题目详解】,当时,符合;当时,不满足.故答案为:【答案点睛】本题主要考查了分段函数的计算,考查了分类讨论的思想.16、72【答案解析】根据

15、给定的茎叶图,得到游客人数在内时,甲景点共有7天,乙景点共有3天,进而求得全年中,甲景点比乙景点多的天数,得到答案.【题目详解】由题意,根据给定的茎叶图可得,在随机抽取了这两个景点20天的游客人数中,游客人数在内时,甲景点共有7天,乙景点共有3天,所以在全年)中,游客人数在内时,甲景点比乙景点多天.故答案为:.【答案点睛】本题主要考查了茎叶图的应用,其中解答中熟记茎叶图的基本知识,合理推算是解答的关键,着重考查了推理与运算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【答案解析】(1)利用正弦定理将边化成角,可得,展开并整理可得,从而可求出

16、角;(2)由余弦定理得,进而可得,由,可求出的值,设边上的高为,可得的面积为,从而可求出.【题目详解】(1)由题意,由正弦定理得.因为,所以,所以,展开得,整理得.因为,所以,故,即.(2)由余弦定理得,则,得,故,故的面积为.设边上的高为,有,故,所以边上的高为.【答案点睛】本题考查正弦、余弦定理在解三角形中的应用,考查三角形的面积公式的应用,考查学生的计算求解能力,属于中档题.18、(1)(2)当G点横坐标为整数时,S不是整数【答案解析】(1)先求解导数,得出切线方程,联立方程得出交点G的轨迹方程;(2)先求解弦长,再分别求解点到直线的距离,表示出四边形的面积,结合点G的横坐标为整数进行判

17、断.【题目详解】(1)设,则,抛物线C的方程可化为,则,所以曲线C在点A处的切线方程为,在点B处的切线方程为,因为两切线均过点G,所以,所以A,B两点均在直线上,所以直线AB的方程为,又因为直线AB过点F(0,p),所以,即G点轨迹方程为;(2)设点G(,),由(1)可知,直线AB的方程为,即,将直线AB的方程与抛物线联立,整理得,所以,解得,因为直线AB的斜率,所以,且,线段AB的中点为M,所以直线EM的方程为:,所以E点坐标为(0,), 直线AB的方程整理得,则G到AB的距离,则E到AB的距离, 所以,设,因为p是质数,且为整数,所以或,当时,是无理数,不符题意,当时,因为当时,即是无理数

18、,所以不符题意,当时,是无理数,不符题意,综上,当G点横坐标为整数时,S不是整数【答案点睛】本题主要考查直线与抛物线的位置关系,抛物线中的切线问题通常借助导数来求解,四边形的面积问题一般转化为三角形的面积和问题,表示出面积的表达式是求解的关键,侧重考查数学运算的核心素养.19、(1)()(2),(3)【答案解析】(1)依题意先求出,然后根据 ,求出的通项公式为,再检验的情况即可;(2)由递推公式,得, 结合数列性质可得数列相邻项之间的关系,从而可求出结果;(3)通过(1)、(2)可得,所以,记,利用函数单调性可求的范围,从而列不等式可解.【题目详解】解:(1)因为数列满足();当时,检验当时,

19、 成立.所以,数列的通项公式为()(2)由,得, 所以, 由,得,即, 所以, 由,得,因为,所以,上式同除以,得,即,所以,数列时首项为1,公差为1的等差数列,故,(3)因为所以,记,当时,所以,当时,数列为单调递减,当时,从而,当时,因此,所以,对任意的,综上,【答案点睛】本题考在数列通项公式的求法、等差数列的定义及通项公式、数列的单调性,考查考生的逻辑思维能力、运算求解能力以及化归与转化思想、分类讨论思想.20、(),;()1【答案解析】()易得为等比数列,再利用前项和与通项的关系求解的通项公式即可.()由题可知要求的最小值,再分析的正负即可得随的增大而增大再判定可知即可.【题目详解】()因为,故是以为首项,2为公比的等比数列,故.又当时, ,解得.当时, -有,即.当时也满足.故为常数列,所以.即.故,()因为对,恒成立.故只需求的最小值即可.设,则,又,又当时,时.当时,因为.故.综上可知.故随着的增大而增大,故,故【答案点睛】本题主要考查了根据数列的递推公式求解通项公式的方法,同时也考查了根据数列的增减性判断最值的问题,需要根据题意求解的通项,并根据二项式定理分析其正负,从而得到最小项.属于难题.21、(1),.(2),【答案解析】(1)利用枚举法将范数为奇数的二元有序实数对都写出来,再做和;(2)用组合数表示和,再由公式或将组合数进行化简,得出最终结果.【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论