陕西咸阳市2023学年高考数学考前最后一卷预测卷(含解析)_第1页
陕西咸阳市2023学年高考数学考前最后一卷预测卷(含解析)_第2页
陕西咸阳市2023学年高考数学考前最后一卷预测卷(含解析)_第3页
陕西咸阳市2023学年高考数学考前最后一卷预测卷(含解析)_第4页
陕西咸阳市2023学年高考数学考前最后一卷预测卷(含解析)_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年高考数学模拟测试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求

2、的。1设双曲线(a0,b0)的右焦点为F,右顶点为A,过F作AF的垂线与双曲线交于B,C两点,过B,C分别作AC,AB的垂线交于点D若D到直线BC的距离小于,则该双曲线的渐近线斜率的取值范围是 ( )ABCD2设命题:,则为A,B,C,D,3复数的虚部是 ( )ABCD4已知双曲线的左右焦点分别为,以线段为直径的圆与双曲线在第二象限的交点为,若直线与圆相切,则双曲线的渐近线方程是( )A BC D5已知平面和直线a,b,则下列命题正确的是( )A若,b,则B若,则C若,则D若,b,则6单位正方体ABCD-,黑、白两蚂蚁从点A出发沿棱向前爬行,每走完一条棱称为“走完一段”白蚂蚁爬地的路线是AA1

3、A1D1,黑蚂蚁爬行的路线是ABBB1,它们都遵循如下规则:所爬行的第i+2段与第i段所在直线必须是异面直线(iN*).设白、黑蚂蚁都走完2020段后各自停止在正方体的某个顶点处,这时黑、白两蚂蚁的距离是( )A1BCD07已知双曲线的右焦点为,过的直线交双曲线的渐近线于两点,且直线的倾斜角是渐近线倾斜角的2倍,若,则该双曲线的离心率为( )ABCD8已知数列是公差为的等差数列,且成等比数列,则( )A4B3C2D19已知双曲线C:()的左、右焦点分别为,过的直线l与双曲线C的左支交于A、B两点.若,则双曲线C的渐近线方程为( )ABCD10已知角的顶点与坐标原点重合,始边与轴的非负半轴重合,

4、它的终边过点,则的值为( )ABCD11已知角的终边经过点,则ABCD12斜率为1的直线l与椭圆相交于A、B两点,则的最大值为A2BCD二、填空题:本题共4小题,每小题5分,共20分。13某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗原料1千克、原料2千克;生产乙产品1桶需耗原料2千克,原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是_元.14设是公差不为0的等差数列的前n项和,且,则_.15在中,内角的对边分别是,若,则_.16

5、已知关于x的不等式(axa24)(x4)0的解集为A,且A中共含有n个整数,则当n最小时实数a的值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知.(1)求的单调区间;(2)当时,求证:对于,恒成立;(3)若存在,使得当时,恒有成立,试求的取值范围.18(12分)在平面直角坐标系中,直线的参数方程为(为参数)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为(1)求直线的普通方程与曲线的直角坐标方程;(2)若射线与和分别交于点,求19(12分)在本题中,我们把具体如下性质的函数叫做区间上的闭函数:的定义域和值域都是;在上是增函数或者减函数.(

6、1)若在区间上是闭函数,求常数的值;(2)找出所有形如的函数(都是常数),使其在区间上是闭函数.20(12分)超级病菌是一种耐药性细菌,产生超级细菌的主要原因是用于抵抗细菌侵蚀的药物越来越多,但是由于滥用抗生素的现象不断的发生,很多致病菌也对相应的抗生素产生了耐药性,更可怕的是,抗生素药物对它起不到什么作用,病人会因为感染而引起可怕的炎症,高烧、痉挛、昏迷直到最后死亡.某药物研究所为筛查某种超级细菌,需要检验血液是否为阳性,现有n()份血液样本,每个样本取到的可能性均等,有以下两种检验方式:(1)逐份检验,则需要检验n次;(2)混合检验,将其中k(且)份血液样本分别取样混合在一起检验,若检验结

7、果为阴性,这k份的血液全为阴性,因而这k份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这k份血液究竟哪几份为阳性,就要对这k份再逐份检验,此时这k份血液的检验次数总共为次,假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为p().(1)假设有5份血液样本,其中只有2份样本为阳性,若采用逐份检验方式,求恰好经过2次检验就能把阳性样本全部检验出来的概率;(2)现取其中k(且)份血液样本,记采用逐份检验方式,样本需要检验的总次数为,采用混合检验方式,样本需要检验的总次数为.(i)试运用概率统计的知识,若,试求p关于k的函数关系式;(ii)

8、若,采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数期望值更少,求k的最大值.参考数据:,21(12分)为提供市民的健身素质,某市把四个篮球馆全部转为免费民用(1)在一次全民健身活动中,四个篮球馆的使用场数如图,用分层抽样的方法从四场馆的使用场数中依次抽取共25场,在中随机取两数,求这两数和的分布列和数学期望;(2)设四个篮球馆一个月内各馆使用次数之和为,其相应维修费用为元,根据统计,得到如下表的数据:x10152025303540y100001176113010139801477115440160202.993.494.054.504.995.495.99用最小二乘法求

9、与的回归直线方程;叫做篮球馆月惠值,根据的结论,试估计这四个篮球馆月惠值最大时的值参考数据和公式:,22(10分)第十四届全国冬季运动会召开期间,某校举行了“冰上运动知识竞赛”,为了解本次竞赛成绩情况,从中随机抽取部分学生的成绩(得分均为整数,满分100分)进行统计,请根据频率分布表中所提供的数据,解答下列问题:(1)求、的值及随机抽取一考生其成绩不低于70分的概率;(2)若从成绩较好的3、4、5组中按分层抽样的方法抽取5人参加“普及冰雪知识”志愿活动,并指定2名负责人,求从第4组抽取的学生中至少有一名是负责人的概率.组号分组频数频率第1组150.15第2组350.35第3组b0.20第4组2

10、0第5组100.1合计1.002023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【答案解析】由题意,根据双曲线的对称性知在轴上,设,则由得:,因为到直线的距离小于,所以,即,所以双曲线渐近线斜率,故选A2、D【答案解析】直接利用全称命题的否定是特称命题写出结果即可.【题目详解】因为全称命题的否定是特称命题,所以,命题:,则为:,.故本题答案为D.【答案点睛】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.3、C【答案解析】因为 ,所以的虚部是 ,故选C.4、B【答案解析】先设直线与

11、圆相切于点,根据题意,得到,再由,根据勾股定理求出,从而可得渐近线方程.【题目详解】设直线与圆相切于点,因为是以圆的直径为斜边的圆内接三角形,所以,又因为圆与直线的切点为,所以,又,所以,因此,因此有,所以,因此渐近线的方程为.故选B【答案点睛】本题主要考查双曲线的渐近线方程,熟记双曲线的简单性质即可,属于常考题型.5、C【答案解析】根据线面的位置关系,结合线面平行的判定定理、平行线的性质进行判断即可.【题目详解】A:当时,也可以满足,b,故本命题不正确;B:当时,也可以满足,故本命题不正确;C:根据平行线的性质可知:当,时,能得到,故本命题是正确的;D:当时,也可以满足,b,故本命题不正确.

12、故选:C【答案点睛】本题考查了线面的位置关系,考查了平行线的性质,考查了推理论证能力.6、B【答案解析】根据规则,观察黑蚂蚁与白蚂蚁经过几段后又回到起点,得到每爬1步回到起点,周期为1计算黑蚂蚁爬完2020段后实质是到达哪个点以及计算白蚂蚁爬完2020段后实质是到达哪个点,即可计算出它们的距离【题目详解】由题意,白蚂蚁爬行路线为AA1A1D1D1C1C1CCBBA,即过1段后又回到起点,可以看作以1为周期,由,白蚂蚁爬完2020段后到回到C点;同理,黑蚂蚁爬行路线为ABBB1B1C1C1D1D1DDA,黑蚂蚁爬完2020段后回到D1点,所以它们此时的距离为.故选B.【答案点睛】本题考查多面体和

13、旋转体表面上的最短距离问题,考查空间想象与推理能力,属于中等题.7、B【答案解析】先求出直线l的方程为y(xc),与yx联立,可得A,B的纵坐标,利用,求出a,b的关系,即可求出该双曲线的离心率【题目详解】双曲线1(ab0)的渐近线方程为yx,直线l的倾斜角是渐近线OA倾斜角的2倍,kl,直线l的方程为y(xc),与yx联立,可得y或y,2,ab,c2b,e故选B【答案点睛】本题考查双曲线的简单性质,考查向量知识,考查学生的计算能力,属于中档题8、A【答案解析】根据等差数列和等比数列公式直接计算得到答案.【题目详解】由成等比数列得,即,已知,解得.故选:.【答案点睛】本题考查了等差数列,等比数

14、列的基本量的计算,意在考查学生的计算能力.9、D【答案解析】设,利用余弦定理,结合双曲线的定义进行求解即可.【题目详解】设,由双曲线的定义可知:因此再由双曲线的定义可知:,在三角形中,由余弦定理可知:,因此双曲线的渐近线方程为:.故选:D【答案点睛】本题考查了双曲线的定义的应用,考查了余弦定理的应用,考查了双曲线的渐近线方程,考查了数学运算能力.10、B【答案解析】根据三角函数定义得到,故,再利用和差公式得到答案.【题目详解】角的终边过点,.故选:.【答案点睛】本题考查了三角函数定义,和差公式,意在考查学生的计算能力.11、D【答案解析】因为角的终边经过点,所以,则,即.故选D12、C【答案解

15、析】设出直线的方程,代入椭圆方程中消去y,根据判别式大于0求得t的范围,进而利用弦长公式求得|AB|的表达式,利用t的范围求得|AB|的最大值【题目详解】解:设直线l的方程为yx+t,代入y21,消去y得x2+2tx+t210,由题意得(2t)21(t21)0,即t21弦长|AB|4故选:C【答案点睛】本题主要考查了椭圆的应用,直线与椭圆的关系常需要把直线与椭圆方程联立,利用韦达定理,判别式找到解决问题的突破口二、填空题:本题共4小题,每小题5分,共20分。13、1元【答案解析】设分别生产甲乙两种产品为 桶,桶,利润为元则根据题意可得目标函数 ,作出可行域,如图所示作直线 然后把直线向可行域平

16、移,由图象知当直线经过 时,目标函数 的截距最大,此时 最大,由 可得,即 此时 最大 ,即该公司每天生产的甲4桶,乙4桶,可获得最大利润,最大利润为1【答案点睛】本题考查用线性规划知识求利润的最大值,根据条件建立不等式关系,以及利用线性规划的知识进行求解是解决本题的关键14、18【答案解析】将已知已知转化为的形式,化简后求得,利用等差数列前公式化简,由此求得表达式的值.【题目详解】因为,所以.故填:.【答案点睛】本题考查等差数列基本量的计算,考查等差数列的性质以及求和,考查运算求解能力,属于基础题.15、【答案解析】由,根据正弦定理“边化角”,可得,根据余弦定理,结合已知联立方程组,即可求得

17、角.【题目详解】根据正弦定理:可得根据余弦定理:由已知可得:故可联立方程:解得:.由故答案为:.【答案点睛】本题主要考查了求三角形的一个内角,解题关键是掌握由正弦定理“边化角”的方法和余弦定理公式,考查了分析能力和计算能力,属于中档题.16、-1【答案解析】讨论三种情况,a0时,根据均值不等式得到a(a)14,计算等号成立的条件得到答案.【题目详解】已知关于x的不等式(axa14)(x4)0,a0时,x(a)(x4)0,其中a0,故解集为(a,4),由于a(a)14,当且仅当a,即a1时取等号,a的最大值为4,当且仅当a4时,A中共含有最少个整数,此时实数a的值为1;a0时,4(x4)0,解集

18、为(,4),整数解有无穷多,故a0不符合条件; a0时,x(a)(x4)0,其中a4,故解集为(,4)(a,+),整数解有无穷多,故a0不符合条件;综上所述,a1故答案为:1【答案点睛】本题考查了解不等式,均值不等式,意在考查学生的计算能力和综合应用能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)单调减区间为,单调增区间为;(2)详见解析;(3).【答案解析】试题分析:(1)对函数求导后,利用导数和单调性的关系,可求得函数的单调区间.(2)构造函数,利用导数求得函数在上递减,且,则,故原不等式成立.(3)同(2)构造函数,对分成三类,讨论函数的单调性、极值和最值

19、,由此求得的取值范围.试题解析:(1),当时,.解得当时,解得所以单调减区间为,单调增区间为(2)设,当时,由题意,当时,恒成立,当时,恒成立,单调递减又,当时,恒成立,即对于,恒成立(3)因为由(2)知,当时,恒成立,即对于,不存在满足条件的;当时,对于,此时,即恒成立,不存在满足条件的;当时,令,可知与符号相同,当时,单调递减当时,即恒成立综上,的取值范围为点睛:本题主要考查导数和单调区间,导数与不等式的证明,导数与恒成立问题的求解方法.第一问求函数的单调区间,这是导数问题的基本题型,也是基本功,先求定义域,然后求导,要注意通分和因式分解.二、三两问一个是恒成立问题,一个是存在性问题,要注

20、意取值是最大值还是最小值.18、(1): ;: (2) 【答案解析】(1)由可得,由,消去参数,可得直线的普通方程为 由可得,将,代入上式,可得,所以曲线的直角坐标方程为(2)由(1)得,的普通方程为,将其化为极坐标方程可得,当时,所以19、(1);(2).【答案解析】(1)依据新定义,的定义域和值域都是,且在上单调,建立方程求解;(2)依据新定义,讨论的单调性,列出方程求解即可。【题目详解】(1)当时,由复合函数单调性知,在区间上是增函数,即有 ,解得 ;同理,当时,有,解得,综上,。(2)若在上是闭函数,则在上是单调函数,当在上是单调增函数,则 ,解得,检验符合; 当在上是单调减函数,则,

21、解得,在上不是单调函数,不符合题意。故满足在区间上是闭函数只有。【答案点睛】本题主要考查学生的应用意识,利用所学知识分析解决新定义问题。20、(1)(2)(i)(,且).(ii)最大值为4.【答案解析】(1)设恰好经过2次检验能把阳性样本全部检验出来为事件A,利用古典概型、排列组合求解即可;(2)(i)由已知得,的所有可能取值为1,则可求得,即可得到,进而由可得到p关于k的函数关系式;(ii)由可得,推导出,设(),利用导函数判断的单调性,由单调性可求出的最大值【题目详解】(1)设恰好经过2次检验能把阳性样本全部检验出来为事件A,则,恰好经过两次检验就能把阳性样本全部检验出来的概率为(2)(i)由已知得,的所有可能取值为1,若,则,则,p关于k的函数关系式为(,且)(ii)由题意知,得,设(),则,令,则,当时,即在上单调增减,又,又,k的最大值为4【答案点睛】本题考查古典概型的概率公式的应用,考查随机变量及其分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论