辽宁大连市2021-2022学年数学高二下期末教学质量检测试题含解析_第1页
辽宁大连市2021-2022学年数学高二下期末教学质量检测试题含解析_第2页
辽宁大连市2021-2022学年数学高二下期末教学质量检测试题含解析_第3页
辽宁大连市2021-2022学年数学高二下期末教学质量检测试题含解析_第4页
辽宁大连市2021-2022学年数学高二下期末教学质量检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高二下数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1展开式中的系数为()A15B20C30D352某地区一次联考的数学成绩近似地服从正态分布,已知,现随机从这次考试

2、的成绩中抽取100个样本,则成绩低于48分的样本个数大约为()A6B4C94D963已知函数,若函数有个零点,则实数的取值范围为( )ABCD4已知曲线在点处的切线与直线垂直,则实数的值为()A-4B-1C1D45已知随机变量,若,则( )ABCD6已知f(x)=2x2-xA0,12B12,17把边长为的正沿边上的高线折成的二面角,则点到的距离是( )ABCD8设,则的值为( )AB1C0D-19若函数的图象上存在关于直线对称的点,则实数的取值范围是( )ABCD10已知函数 在上单调递减,则的取值范围是( )ABCD11(为虚数单位),则复数对应的点在( )A第一象限B第二象限C第三象限D第

3、四象限12在二项式的展开式中任取2项,则取出的2项中系数均为偶数的概率为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13当双曲线M:的离心率取得最小值时,双曲线M的渐近线方程为_142018年春季,世界各地相继出现流感疫情,这已经成为全球性的公共卫生问题.为了考察某种流感疫苗的效果,某实验室随机抽取100只健康小鼠进行试验,得到如下列联表:感染未感染总计注射104050未注射203050总计3070100参照附表,在犯错误的概率最多不超过_的前提下,可认为“注射疫苗”与“感染流感”有关系(参考公式:.)0.100.050.0250.0100.0050.0012.7063.84

4、15.0246.6357.87910.82815乒乓球赛规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分设在甲、乙的比赛中,每次发球,甲发球得1分的概率为,乙发球得1分的概率为,各次发球的胜负结果相互独立,甲、乙的一局比赛中,甲先发球.则开始第4次发球时,甲、乙的比分为1比2的概率为_.16为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位: ),所得数据均在区间上,其频率分布直方图如图所示,则在抽测的60株树木中,有_株树木的底部周长大于110.三、解答题:共70分。解答应写出文字说明、证明过程或演算步

5、骤。17(12分)已知的角、所对的边分别是、,设向量,.(1)若,求证:为等腰三角形;(2)若,边长,角,求的面积.18(12分)已知直线经过点P(1,1),倾斜角(1)写出直线的参数方程;(2)设 与圆 相交于两点A,B,求点P到A,B两点的距离之积19(12分)如图,在底面为正方形的四棱锥中,平面,点,分别在棱,上,且满足,.(1)证明:平面;(2)若,求二面角的余弦值.20(12分)甲盒有标号分别为1、2、3的3个红球;乙盒有标号分别为1、2、3、4的4个黑球,从甲、乙两盒中各抽取一个小球.(1)求抽到红球和黑球的标号都是偶数的概率;(2)现从甲乙两盒各随机抽取1个小球,记其标号的差的绝

6、对值为,求的分布列和数学期望.21(12分)设,且.(1)求的值;(2)求在区间上的最大值.22(10分)现从某医院中随机抽取了位医护人员的关爱患者考核分数(患者考核:分制),用相关的特征量表示;医护专业知识考核分数(试卷考试:分制),用相关的特征量表示,数据如下表:(1)求关于的线性回归方程(计算结果精确到);(2)利用(1)中的线性回归方程,分析医护专业考核分数的变化对关爱患者考核分数的影响,并估计当某医护人员的医护专业知识考核分数为分时,他的关爱患者考核分数(精确到).参考公式及数据:回归直线方程中斜率和截距的最小二乘法估计公式分别为,其中.参考答案一、选择题:本题共12小题,每小题5分

7、,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用多项式乘法将式子展开,根据二项式定理展开式的通项即可求得的系数.【详解】根据二项式定理展开式通项为则展开式的通项为则展开式中的项为则展开式中的系数为故选:C【点睛】本题考查了二项定理展开式的应用,指定项系数的求法,属于基础题.2、B【解析】由已知根据正态分布的特点,可得,根据对称性,则,乘以样本个数得答案【详解】由题意,知,可得,又由对称轴为,所以,所以成绩小于分的样本个数为个故选:B【点睛】本题考查正态分布曲线的特点及曲线所表示的意义,以及考查正态分布中两个量和的应用,其中熟记正态分布的对称性是解答的关键,属于

8、基础题3、D【解析】画出函数的图像,将的零点问题转化为与有个交点问题来解决,画出图像,根据图像确定的取值范围.【详解】当时,所以,当时,所以,当时,所以.令,易知,所以,将函数有个零点问题,转化为函数图像,与直线有个交点来求解.画出的图像如下图所示,由图可知,而,故.故选D.【点睛】本小题主要考查分段函数图像与性质,考查函数零点问题的求解策略,考查化归与转化的数学思想方法,考查数形结合的数学思想方法,属于中档题.4、C【解析】先求出在点处的切线斜率,然后利用两直线垂直的条件可求出的值.【详解】由题意,则曲线在点处的切线斜率为4,由于切线与直线垂直,则,解得.故选C.【点睛】本题考查了导数的几何

9、意义,考查了两直线垂直的性质,考查了计算能力,属于基础题.5、D【解析】由二项分布的期望公式,可计算得,由,即得解.【详解】由题意随机变量,由二项分布的期望公式,可得故选:D【点睛】本题考查了二项分布的期望公式及概率公式,考查了学生概念理解,数学运算的能力,属于中档题.6、B【解析】求出函数y=fx的定义域,并对该函数求导,解不等式fx【详解】函数y=fx的定义域为0,+f令fx0,得12x1,因此,函数y=f【点睛】本题考查利用导数求函数的单调区间,除了解导数不等式之外,还要注意将解集与定义域取交集,考查计算能力,属于中等题。7、D【解析】取中点,连接,根据垂直关系可知且平面,通过三线合一和

10、线面垂直的性质可得,从而根据线面垂直的判定定理知平面,根据线面垂直性质知,即为所求距离;在中利用勾股定理求得结果.【详解】取中点,连接,如下图所示:为边上的高 ,即为二面角的平面角,即且平面为正三角形 为正三角形又为中点 平面 , 平面又平面 即为点到的距离又, 本题正确选项:【点睛】本题考查立体几何中点到直线距离的求解,关键是能够通过垂直关系在立体图形中找到所求距离,涉及到线面垂直的判定定理和性质定理的应用,属于中档题.8、C【解析】首先采用赋值法,令,代入求值,通分后即得结果.【详解】令,, , .故选:C【点睛】本题考查二项式定理和二项式系数的性质,涉及系数和的时候可以采用赋值法求和,本

11、题意在考查化归转化和计算求解能力,属于中档题型.9、D【解析】分析:设若函数的图象上存在关于直线对称的点,则函数与函数的图象有交点,即有解,利用导数法,可得实数a的取值范围.详解:由的反函数为,函数与的图象上存在关于直线对称的点,则函数与函数的图象有交点,即有解,即,令,则,当时,在上单调递增,当时,可得求得的最小值为1.实数的取值范围是,故选:D.点睛:本题考查的知识点是函数图象的交点与方程根的关系,利用导数求函数的最值,难度中档.10、A【解析】等价于在上恒成立,即在上恒成立,再构造函数并求g(x)的最大值得解.【详解】在上恒成立,则在上恒成立,令,所以在单调递增,故g(x)的最大值为g(

12、3)=.故.故选A【点睛】本题主要考查利用导数研究函数的单调性,考查利用导数研究不等式的恒成立问题,属于基础题.11、A【解析】通过 求出 ,然后得到复数 对应的点的坐标【详解】由得 所以复数 在复平面对应的点在第一象限【点睛】本题主要考查复数的基本概念,两个复数代数形式的除法,复数与复平面内对应点之间的关系,属于基础题12、C【解析】二项式的展开式共十项,从中任取2项,共有种取法,再研究其系数为偶数情况有几个,从中取两个有几种取法得出答案【详解】二项式的展开式共十项,从中任取2项,共有种取法,展开式系数为偶数的有,共六个,取出的2项中系数均为偶数的取法有种取法,取出的2项中系数均为偶数的概率

13、为故选:【点睛】本题考查二项式定理及等可能事件的概率,正确求解本题的关键是找出哪些项的系数是偶数,求出取出的2项中系数均为偶数的事件包含的基本事件数二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求出双曲线离心率的表达式,求解最小值,求出m,即可求得双曲线渐近线方程【详解】解:双曲线M:,显然,双曲线的离心率,当且仅当时取等号,此时双曲线M:,则渐近线方程为:故答案为:【点睛】本题考查双曲线渐近线方程的求法,考查基本不等式的应用,属于基础题14、0.05【解析】分析:直接利用独立性检验公式计算即得解.详解:由题得,所以犯错误的概率最多不超过0.05的前提下,可认为“注射疫苗”与“

14、感染流感”有关系故答案为0.05.点睛:本题主要考查独立性检验和的计算,意在考查学生对这些知识的掌握水平和解决实际问题的能力.15、【解析】先确定比分为1比2时甲乙在三次发球比赛中得分情况,再分别求对应概率,最后根据互斥事件概率公式求结果【详解】比分为1比2时有三种情况:(1)甲第一次发球得分,甲第二次发球失分,乙第一次发球得分(2)甲第一次发球失分,甲第二次发球得分,乙第一次发球得分(3)甲第一次发球失分,甲第二次发球失分,乙第一次发球失分所以概率为【点睛】本题考查根据互斥事件概率公式求概率,考查基本分析求解能力,属中档题.16、18【解析】根据频率小矩形的面积小矩形的高组距底部,求出周长大

15、于110的频率,再根据频数样本容量频率求出对应的频数.【详解】由频率分布直方图知:底部周长大于110的频率为,所以底部周长大于110的频数为(株),故答案是:18.【点睛】该题考查的是有关频率分布直方图的应用,在解题的过程中,注意小矩形的面积表示的是对应范围内的频率,属于简单题目.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】因为,所以,即,其中是的外接圆半径, 所以,所以为等腰三角形.因为,所以.由余弦定理可知,即解方程得:(舍去)所以.18、(1)(2)2【解析】(1)直线的参数方程为,即(t为参数)(2)把直线代入得,则点到两点的距离之积为

16、19、(1)见解析; (2).【解析】(1)在棱上取一点,使得,连接,可证明是平行四边形,可得,由线面平行的判定定理可得结果;(2)以为坐标原点以为轴建立空间直角坐标系,设,利用向量垂直数量积为零列方程求出平面的法向量,结合平面的一个法向量为,利用空间向量夹角余弦公式求解即可.【详解】(1)在棱上取一点,使得,连接,因为,所以,所以.又因为,所以,所以是平行四边形,所以,因为平面,平面,所以平面.(2)依题意,以为坐标原点,以为轴建立空间直角坐标系,设,则,所以,.设平面的法向量为,则,即,取,则.又平面,所以平面的一个法向量为,所以,又二面角为锐角,所以二面角的余弦值为.【点睛】本题主要考查

17、线面平行的判定定理以及利用空间向量求二面角,属于中档题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.20、(1)(2)见解析【解析】(1)由独立事件的概率公式即可得到答案;(2)的所有可能取值为0,1,2,3,分别计算概率,于是得到分布列和数学期望.【详解】(1)由题意,抽到红球是偶数的概率为,抽到黑球是偶数的概率为因为两次抽取是相互独立事件,所以由独立事件的概率公

18、式,得抽到红球和黑球的标号都是偶数的概率为(2)由题意,的所有可能取值为0,1,2,3故的分布列为0123故的数学期望为【点睛】本题主要考查相互独立事件的概率计算,分布列以及数学期望,意在考查学生的分析能力,转化能力及计算能力.21、(1);(2)2【解析】(1)直接由求得的值;(2)由对数的真数大于0求得的定义域,判定在上的增减性,求出在上的最值,即得值域【详解】解:(1),;(2)由得,函数的定义域为, 当时,是增函数;当时,是减函数,函数在上的最大值是【点睛】本题考查了求函数的定义域和值域的问题,利用对数函数的真数大于0可求得定义域,利用函数的单调性可求得值域22、 (1) .(2) 随着医护专业知识的提高,个人的关爱患者的心态会变得更温和,耐心。因此关爱忠者的考核分数也会稳定提高;他的关爱患者考核分数约为分.【解析】分析:(1)由题意结合线性回归方程计算公式可得, ,则线性回归方程为.(2)由(1)知.则随着医护专业知识的提高,关爱忠者的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论