




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知复数z满足,则复数等于( )ABCDi2已知点是抛物线的焦点,点为抛物线上的任意一点,为平面上点,则的最小值为( )A3B2C4D3若6名男生和9名女生身高(单位:)
2、的茎叶图如图,则男生平均身高与女生身高的中位数分别为( )A179,168B180,166C181,168D180,1684已知mR,若函数f(x)=1x+1-mx-m-3(-1x0)A-94,-2B(-95将3本相同的小说,2本相同的诗集全部分给4名同学,每名同学至少1本,则不同的分法有( )A24种B28种C32种D36种6将函数的图象向左平移个单位,所得函数图象的一条对称轴的方程为( )ABCD7已知函数的导函数为,且对任意的恒成立,则下列不等式均成立的是( )ABCD8设,则的值为( )ABCD9已知集合,则()ABCD10已知函数在时取得极大值,则的取值范围是( )ABCD11已知,
3、则的大小关系为( )ABCD12已知曲线C:y,曲线C关于y轴的对称曲线C的方程是()AyByCyDy二、填空题:本题共4小题,每小题5分,共20分。13 14对于定义域为的函数,若满足 ; 当,且时,都有; 当,且时,都有,则称为“偏对称函数”现给出四个函数:; ; ;.则其中是“偏对称函数”的函数序号为 _15若复数,(为虚数单位)则实数_16某省实行高考改革,考生除参加语文、数学、英语统一考试外,还需从物理、化学、生物、政治、历史、地理科中选考科.学生甲想报考某高校的医学专业,就必须要从物理、生物、政治科中至少选考科,则学生甲的选考方法种数为_(用数字作答).三、解答题:共70分。解答应
4、写出文字说明、证明过程或演算步骤。17(12分)已知函数有两个极值点和3.(1)求,的值;(2)若函数的图象在点的切线为,切线与轴和轴分别交于,两点,点为坐标原点,求的面积.18(12分)若,()求证:;()求证:;()在()中的不等式中,能否找到一个代数式,满足所求式?若能,请直接写出该代数式;若不能,请说明理由.19(12分)在平面真角坐标系xOy中,曲线的参数方程为(t为参数),以原点O为极点,x轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为(1)求曲线的普通方程和曲线的直角坐标方程;(2)若曲线与曲线交于M,N两点,直线OM和ON的斜率分别为和,求的值20(12分)选修4-5:不等式
5、选讲 已知函数(1)若的解集为,求实数的值;(2)若,若存在,使得不等式成立,求实数的取值范围.21(12分)某企业为了检查甲、乙两条自动包装流水线的生产情况,随机在这两条流水线上各抽取件产品作为样本称出它们的质量(单位:毫克),质量值落在的产品为合格品,否则为不合格品如表是甲流水线样本频数分布表,如图是乙流水线样本的频率分布直方图产品质量/毫克频数()以样本的频率作为概率,试估计从甲流水线上任取件产品,求其中不合格品的件数的数学期望甲流水线乙流水线总计合格品不合格品总计()由以上统计数据完成下面列联表,能否在犯错误的概率不超过的前提下认为产品的包装合格与两条自动包装流水线的选择有关?()由乙
6、流水线的频率分布直方图可以认为乙流水线生产的产品质量服从正态分布,求质量落在上的概率参考公式:参考数据: 参考公式: ,其中22(10分)已知的内角A的大小为,面积为.(1)若,求的另外两条边长;(2)设O为的外心,当时,求的值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】把给出的等式通过复数的乘除运算化简后,直接利用共轭复数的定义即可得解.【详解】,.故选:D.【点睛】本题考查了复数的代数形式的乘除运算,考查共扼复数,是基础题.2、A【解析】作垂直准线于点,根据抛物线的定义,得到,当三点共线时,的值最小,进而可得
7、出结果.【详解】如图,作垂直准线于点,由题意可得,显然,当三点共线时,的值最小;因为,准线,所以当三点共线时,所以.故选A【点睛】本题主要考查抛物线上任一点到两定点距离的和的最值问题,熟记抛物线的定义与性质即可,属于常考题型.3、C【解析】根据平均数和中位数的定义即可得出结果.【详解】6名男生的平均身高为,9名女生的身高按由低到高的顺序排列为162,163,166,167,168,170,176,184,185,故中位数为168.故选:C.【点睛】本题考查由茎叶图求平均数和中位数,难度容易.4、B【解析】通过参变分离、换元法,把函数f(x)的零点个数转化成直线y=m与抛物线的交点个数.【详解】
8、-1x0,0 x+11,函数f(x)在-1x0有两个不同零点方程m=(1x+1)2m=t2-3t在t1有且仅有两个不同的根y=m-【点睛】通过换元把复杂的分式函数转化为熟知的二次函数,但要注意换元后新元的取值范围.5、B【解析】试题分析:第一类:有一个人分到一本小说和一本诗集,这种情况下的分法有:先将一本小说和一本诗集分到一个人手上,有种分法,将剩余的本小说,本诗集分给剰余个同学,有种分法,那共有种;第二类:有一个人分到两本诗集,这种情况下的分法有:先两本诗集分到一个人手上,有种情况,将剩余的本小说分给剩余个人,只有一种分法,那共有:种,第三类:有一个人分到两本小说,这种情况的分法有:先将两本
9、小说分到一个人手上,有种情况,再将剩余的两本诗集和一本小说分给剩余的个人,有种分法,那共有:种,综上所述:总共有:种分法,故选B.考点:1、分布计数乘法原理;2、分类计数加法原理.【方法点睛】本题主要考查分类计数原理与分步计数原理及排列组合的应用,属于难题.有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.6、C【解析】利用“左加右减”的平移原则,求得平移后解析式,即可求得对
10、称轴方程.【详解】将函数的图象向左平移个单位,得到,令,解得,令,解得.故选:C.【点睛】本题考查函数图像的平移,以及函数对称轴的求解,属综合基础题.7、A【解析】构造函数,求出函数的导数,判断函数的单调性,从而求出结果.【详解】令,则.,是减函数,则有,即,所以.选.【点睛】本题考查函数与导数中利用函数单调性比较大小.其中构造函数是解题的难点.一般可通过题设已知条件结合选项进行构造.对考生综合能力要求较高.8、A【解析】解析:当时,;当时,故,应选答案A9、C【解析】利用对数函数的单调性对集合化简得x|0 x1,然后求出AB即可【详解】x|0 x2,AB1,故选:C【点睛】考查对数不等式的解
11、法,以及集合的交集及其运算10、A【解析】先对进行求导,然后分别讨论和时的极值点情况,随后得到答案.【详解】由得,当时,由,得,由,得.所以在取得极小值,不符合;当时,令,得或,为使在时取得极大值,则有,所以,所以选A.【点睛】本题主要考查函数极值点中含参问题,意在考查学生的分析能力和计算能力,对学生的分类讨论思想要求较高,难度较大.11、A【解析】利用等中间值区分各个数值的大小【详解】,故,所以故选A【点睛】本题考查大小比较问题,关键选择中间量和函数的单调性进行比较12、A【解析】设所求曲线上任意一点,由关于直线的对称的点在已知曲线上,然后代入已知曲线,即可求解【详解】设所求曲线上任意一点,
12、则关于直线的对称的点在已知曲线,所以,故选A【点睛】本题主要考查了已知曲线关于直线的对称的曲线方程的求解,其步骤是:在所求曲线上任取一点,求得其关于直线的对称点,代入已知曲线求解是解答的关键,着重考查了推理与运算能力,属于中档试题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】试题分析:考点:定积分14、.【解析】分析:条件等价于f(x)在(,0)上单调递减,在(0,+)上单调递增,条件等价于f(x)f(x)0在(,0)上恒成立,依次判断各函数是否满足条件即可得出结论详解:由可知当x0时,f(x)0,当x0时,f(x)0,f(x)在(,0)上单调递减,在(0,+)上单调递增,f2
13、(x)=ln(x)=ln,f2(x)在R上单调递减,不满足条件,f2(x)不是“偏对称函数”;又()=()=0,(x)在(0,+)上不单调,故(x)不满足条件,(x)不是“偏对称函数”;又f2(x)=ln(x)=ln,f2(x)在R上单调递减,不满足条件,f2(x)不是“偏对称函数”;由可知当x10时,f(x1)f(x2),即f(x)f(x)0在(,0)上恒成立,对于(x),当x0时,(x)(x)=xex+1,令h(x)=xex+1,则h(x)=1+ex0,h(x)在(,0)上单调递增,故h(x)h(0)=0,满足条件,由基本初等函数的性质可知(x)满足条件,(x)为“偏对称函数”;对于f4(
14、x),f4(x)=2e2xex1=2(ex)2,当x0时,0ex1,f4(x)2(1)2=0,当x0时,ex1,f4(x)2(1)2=0,f4(x)在(,0)上单调递减,在(0,+)上单调递增,满足条件,当x0,令m(x)=f4(x)f4(x)=e2xe2x+exex2x,则m(x)=2e2x+2e2xexex2=2(e2x+e2x)(ex+ex)2,令ex+ex=t,则t2,于是m(x)=2t2t6=2(t)22(2)2=0,m(x)在(,0)上单调递增,m(x)m(0)=0,故f4(x)满足条件,又f4(0)=0,即f4(x)满足条件,f4(x)为“偏对称函数”故答案为:点睛:本题以新定义
15、“偏对称函数”为背景,考查了函数的单调性及恒成立问题的处理方法,属于中档题.15、【解析】由题得,解方程即得解.【详解】由题得,所以.故答案为【点睛】本题主要考查复数模的性质和计算,意在考查学生对这些知识的理解掌握水平.16、【解析】在物理、化学、生物、政治、历史、地理科中任选科的选法中减去只选化学、历史、地理科的情况,利用组合计数原理可得出结果.【详解】从物理、生物、政治科中至少选考科,也可以理解为:在物理、化学、生物、政治、历史、地理科中任选科选法中减去只选化学、历史、地理科的情况,科中任选科的选法种数为,因此,学生甲的选考方法种数为.故答案为:.【点睛】本题考查组合问题,也可以直接考虑,
16、分类讨论,在出现“至少”的问题时,利用正难则反的方法求解较为简单,考查计算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、 (1) , ;(2) 【解析】(1)先对函数求导,得到,根据函数极值点,结合韦达定理,即可求出结果;(2)先由(1)得到解析式,求出点,根据导函数,求出切线斜率,得到切线方程,进而求出,两点坐标,即可求出三角形面积.【详解】(1)由题意可得,因为函数有两个极值点和3.所以的两根为和3. 由韦达定理知,解得, (2)由(1)知,所以切线的斜率 所以切线的方程为:此时,所以【点睛】本题主要考查由函数的极值点求参数的问题,以及求函数在某点处
17、的切线方程,熟记导数的几何意义即可,属于常考题型.18、 ()证明见解析;()证明见解析;()答案见解析.【解析】分析:()由题意结合绝对值不等式的性质即可证得题中的结论;()由不等式的性质可证得.则.()利用放缩法可给出结论:,或详解:()因为,且,所以,所以()因为,所以又因为,所以由同向不等式的相加性可将以上两式相加得所以所以.(i) 因为,所以由同向不等式的相加性可将以上两式相加得所以(ii) 所以由两边都是正数的同向不等式的相乘性可将以上两不等式(i)(ii)相乘得.()因为,所以,或(只要写出其中一个即可)点睛:本题主要考查不等式的性质,放缩法及其应用等知识,意在考查学生的转化能力
18、和计算求解能力.19、(1),(2)1【解析】(1)消去t即可得的普通方程,通过移项和可得的普通方程;(2)由可得的几何意义是斜率,将的参数方程代入的普通方程,得到关于t的方程且,由韦达定理可得【详解】解:(1)由,(t为参数),消去参数t,得,即的普通方程为,由,得,即,将代入,得,即的直角坐标方程为(2)由(t为参数),得,则的几何意义是抛物线上的点(原点除外)与原点连线的斜率由题意知,将,(t为参数)代入,得由,且得,且设M,N对应的参数分别为、,则,所以【点睛】本题考查参数方程,极坐标方程化为普通方程和参数方程在几何问题中的应用20、 (1) .(2) .【解析】分析:(1)利用绝对值不等式的解集,列出方程求解即可;(2)利用,若存在,使得不等式成立,化简函数的解析式,通过函数的最小值以及函数的单调性,列出不等式,求解即可.详解:(1)显然,当时,解集为,无解;当时,解集为,综上所述. (2)当时,令由此可知在上单调递减,在上单调递增,当时,取到最小值-2,由题意知,. 点睛:本题考查函数的最值的应用,绝对值不等式的解法,考查转化思想以及计算能力.2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届衡水中学高一物理第二学期期末综合测试模拟试题含解析
- 2025届河北省张家口市涿鹿中学高一物理第二学期期末联考试题含解析
- 2025届天津市杨村第一中学物理高二第二学期期末教学质量检测试题含解析
- 2025届新疆阿克苏地区乌什县二中物理高一下期末检测试题含解析
- 2025届试题山西省怀仁市重点中学物理高二第二学期期末调研试题含解析
- 二零二五年度冷链车队专业运输合作协议
- 二零二五年度农家乐经营权转让合同范本
- 2025版新能源汽车电池回收利用销售合作协议
- 二零二五年教育辅导帮工服务合同
- 2025版安置房房票买卖贷款提前还款合同
- 陕西省2025年中考语文真题试卷及答案
- 2024-2025学年北师大版七年级数学下册期末阶段复习综合练习题
- 2025年广州数学中考试题及答案
- 湖北省省直辖县级行政区划潜江市2024-2025学年七年级下学期期末考试生物试卷(含答案)
- 学霸提优第四单元《我们讲文明》重难点梳理 课件
- 医德培训课件
- 公司适用法律法规标准清单2025年08月更新
- 2025年山西省中考语文试卷真题(含答案解析)
- 农机下乡活动方案
- 2024年全国导游资格考试笔试题和答案总结
- 国家中医药管理局《中医药事业发展“十五五”规划》全文
评论
0/150
提交评论