辽宁省大连市渤海高级中学2023学年高考考前模拟数学试题(含解析)_第1页
辽宁省大连市渤海高级中学2023学年高考考前模拟数学试题(含解析)_第2页
辽宁省大连市渤海高级中学2023学年高考考前模拟数学试题(含解析)_第3页
辽宁省大连市渤海高级中学2023学年高考考前模拟数学试题(含解析)_第4页
辽宁省大连市渤海高级中学2023学年高考考前模拟数学试题(含解析)_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年高考数学模拟测试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知F是双曲线(k为常数)的一个焦点,则点F到双曲线C的一条渐近线的距离为( )A2kB4kC4D22某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和

2、护士,则不同的分配方案有A72种B36种C24种D18种3已知数列满足:)若正整数使得成立,则( )A16B17C18D194某几何体的三视图如图所示(单位:cm),则该几何体的表面积是( )ABCD5已知抛物线的焦点与双曲线的一个焦点重合,且抛物线的准线被双曲线截得的线段长为,那么该双曲线的离心率为( )ABCD6已知函数是定义在R上的奇函数,且满足,当时,(其中e是自然对数的底数),若,则实数a的值为( )AB3CD7函数()的图像可以是( )ABCD8设等比数列的前项和为,则“”是“”的( )A充分不必要B必要不充分C充要D既不充分也不必要9根据如图所示的程序框图,当输入的值为3时,输出

3、的值等于( )A1BCD10设等比数列的前项和为,则“”是“”的( )A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件11已知为定义在上的偶函数,当时,则( )ABCD12双曲线x26-y23=1的渐近线与圆(x3)2y2A3B2C3D6二、填空题:本题共4小题,每小题5分,共20分。13已知数列满足,且恒成立,则的值为_.14已知函数的部分图象如图所示,则的值为_. 15若函数()的图象与直线相切,则_.16某校初三年级共有名女生,为了了解初三女生分钟“仰卧起坐”项目训练情况,统计了所有女生分钟“仰卧起坐”测试数据(单位:个),并绘制了如下频率分布直方图,则分钟至少能做到

4、个仰卧起坐的初三女生有_个三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知椭圆的短轴长为,左右焦点分别为,点是椭圆上位于第一象限的任一点,且当时,.(1)求椭圆的标准方程;(2)若椭圆上点与点关于原点对称,过点作垂直于轴,垂足为,连接并延长交于另一点,交轴于点.()求面积最大值;()证明:直线与斜率之积为定值.18(12分)已知抛物线E:y22px(p0),焦点F到准线的距离为3,抛物线E上的两个动点A(x1,y1)和B(x2,y2),其中x1x2且x1+x21线段AB的垂直平分线与x轴交于点 C(1)求抛物线E的方程;(2)求ABC面积的最大值19(12分)小

5、丽在同一城市开的2家店铺各有2名员工.节假日期间的某一天,每名员工休假的概率都是,且是否休假互不影响,若一家店铺的员工全部休假,而另一家无人休假,则调剂1人到该店维持营业,否则该店就停业.(1)求发生调剂现象的概率;(2)设营业店铺数为X,求X的分布列和数学期望.20(12分)已知函数,其中.()若,求函数的单调区间;()设.若在上恒成立,求实数的最大值.21(12分)团购已成为时下商家和顾客均非常青睐的一种省钱、高校的消费方式,不少商家同时加入多家团购网.现恰有三个团购网站在市开展了团购业务,市某调查公司为调查这三家团购网站在本市的开展情况,从本市已加入了团购网站的商家中随机地抽取了50家进

6、行调查,他们加入这三家团购网站的情况如下图所示.(1)从所调查的50家商家中任选两家,求他们加入团购网站的数量不相等的概率;(2)从所调查的50家商家中任取两家,用表示这两家商家参加的团购网站数量之差的绝对值,求随机变量的分布列和数学期望;(3)将频率视为概率,现从市随机抽取3家已加入团购网站的商家,记其中恰好加入了两个团购网站的商家数为,试求事件“”的概率.22(10分)已知函数.(1)解不等式;(2)若函数的最小值为,求的最小值.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析

7、】分析可得,再去绝对值化简成标准形式,进而根据双曲线的性质求解即可.【题目详解】当时,等式不是双曲线的方程;当时,可化为,可得虚半轴长,所以点F到双曲线C的一条渐近线的距离为2.故选:D【答案点睛】本题考查双曲线的方程与点到直线的距离.属于基础题.2、B【答案解析】根据条件2名内科医生,每个村一名,3名外科医生和3名护士,平均分成两组,则分1名外科,2名护士和2名外科医生和1名护士,根据排列组合进行计算即可【题目详解】2名内科医生,每个村一名,有2种方法,3名外科医生和3名护士,平均分成两组,要求外科医生和护士都有,则分1名外科,2名护士和2名外科医生和1名护士,若甲村有1外科,2名护士,则有

8、C3若甲村有2外科,1名护士,则有C3则总共的分配方案为2(9+9)=218=36种,故选:B.【答案点睛】本题主要考查了分组分配问题,解决这类问题的关键是先分组再分配,属于常考题型.3、B【答案解析】计算,故,解得答案.【题目详解】当时,即,且.故,故.故选:.【答案点睛】本题考查了数列的相关计算,意在考查学生的计算能力和对于数列公式方法的综合应用.4、D【答案解析】根据三视图判断出几何体为正四棱锥,由此计算出几何体的表面积.【题目详解】根据三视图可知,该几何体为正四棱锥.底面积为.侧面的高为,所以侧面积为.所以该几何体的表面积是.故选:D【答案点睛】本小题主要考查由三视图判断原图,考查锥体

9、表面积的计算,属于基础题.5、A【答案解析】由抛物线的焦点得双曲线的焦点,求出,由抛物线准线方程被曲线截得的线段长为,由焦半径公式,联立求解.【题目详解】解:由抛物线,可得,则,故其准线方程为,抛物线的准线过双曲线的左焦点,抛物线的准线被双曲线截得的线段长为,又,则双曲线的离心率为故选:【答案点睛】本题考查抛物线的性质及利用过双曲线的焦点的弦长求离心率. 弦过焦点时,可结合焦半径公式求解弦长6、B【答案解析】根据题意,求得函数周期,利用周期性和函数值,即可求得.【题目详解】由已知可知,所以函数是一个以4为周期的周期函数,所以,解得,故选:B.【答案点睛】本题考查函数周期的求解,涉及对数运算,属

10、综合基础题.7、B【答案解析】根据,可排除,然后采用导数,判断原函数的单调性,可得结果.【题目详解】由题可知:,所以当时,又,令,则令,则所以函数在单调递减在单调递增,故选:B【答案点睛】本题考查函数的图像,可从以下指标进行观察:(1)定义域;(2)奇偶性;(3)特殊值;(4)单调性;(5)值域,属基础题.8、A【答案解析】首先根据等比数列分别求出满足,的基本量,根据基本量的范围即可确定答案.【题目详解】为等比数列,若成立,有,因为恒成立,故可以推出且,若成立,当时,有,当时,有,因为恒成立,所以有,故可以推出,所以“”是“”的充分不必要条件.故选:A.【答案点睛】本题主要考查了等比数列基本量

11、的求解,充分必要条件的集合关系,属于基础题.9、C【答案解析】根据程序图,当x0继续运行,x=1-2=-10,程序运行结束,得,故选C【答案点睛】本题考查程序框图,是基础题10、C【答案解析】根据等比数列的前项和公式,判断出正确选项.【题目详解】由于数列是等比数列,所以,由于,所以,故“”是“”的充分必要条件.故选:C【答案点睛】本小题主要考查充分、必要条件的判断,考查等比数列前项和公式,属于基础题.11、D【答案解析】判断,利用函数的奇偶性代入计算得到答案.【题目详解】,故选:【答案点睛】本题考查了利用函数的奇偶性求值,意在考查学生对于函数性质的灵活运用.12、A【答案解析】由圆心到渐近线的

12、距离等于半径列方程求解即可.【题目详解】双曲线的渐近线方程为y22x,圆心坐标为(3,0)由题意知,圆心到渐近线的距离等于圆的半径r,即r答案:A【答案点睛】本题考查了双曲线的渐近线方程及直线与圆的位置关系,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】易得,所以是等差数列,再利用等差数列的通项公式计算即可.【题目详解】由已知,因,所以,所以数列是以为首项,3为公差的等差数列,故,所以.故答案为:【答案点睛】本题考查由递推数列求数列中的某项,考查学生等价转化的能力,是一道容易题.14、【答案解析】由图可得的周期、振幅,即可得,再将代入可解得,进一步求得解析式及.

13、【题目详解】由图可得,所以,即,又,即,又,故,所以,.故答案为:【答案点睛】本题考查由图象求解析式及函数值,考查学生识图、计算等能力,是一道中档题.15、2【答案解析】设切点由已知可得,即可解得所求.【题目详解】设,因为,所以,即,又,.所以,即,.故答案为:.【答案点睛】本题考查导数的几何意义,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,难度较易.16、【答案解析】根据数据先求出,再求出分钟至少能做到个仰卧起坐的初三女生人数即可.【题目详解】解:,.则分钟至少能做到个仰卧起坐的初三女生人数为.故答案为:.【答案点睛】本题主要考查频率分布直方图,属于基础题.三、解答题

14、:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)();()证明见解析.【答案解析】(1)由,解方程组即可得到答案;(2)()设,则,易得,注意到,利用基本不等式得到的最大值即可得到答案;()设直线斜率为,直线方程为,联立椭圆方程得到的坐标,再利用两点的斜率公式计算即可.【题目详解】(1)设,由,得.将代入,得,即,由,解得,所以椭圆的标准方程为.(2)设,则,()易知为的中位线,所以,所以,又满足,所以,得,故,当且仅当,即,时取等号,所以面积最大值为.()记直线斜率为,则直线斜率为,所以直线方程为.由,得,由韦达定理得,所以,代入直线方程,得,于是,直线斜率,所以直线

15、与斜率之积为定值.【答案点睛】本题考查直线与椭圆的位置关系,涉及到椭圆中的最值及定值问题,在解椭圆与直线的位置关系的答题时,一般会用到根与系数的关系,考查学生的数学运算求解能力,是一道有一定难度的题.18、(1)y26x(2)【答案解析】(1)根据抛物线定义,写出焦点坐标和准线方程,列方程即可得解;(2)根据中点坐标表示出|AB|和点到直线的距离,得出面积,利用均值不等式求解最大值.【题目详解】(1)抛物线E:y22px(p0),焦点F(,0)到准线x的距离为3,可得p3,即有抛物线方程为y26x;(2)设线段AB的中点为M(x0,y0),则,y0,kAB,则线段AB的垂直平分线方程为yy0(

16、x2),可得x5,y0是的一个解,所以AB的垂直平分线与x轴的交点C为定点,且点C(5,0),由可得直线AB的方程为yy0(x2),即x(yy0)+2 代入y26x可得y22y0(yy0)+12,即y22y0y+2y020 ,由题意y1,y2是方程的两个实根,且y1y2,所以1y021(2y0212)1y02+180,解得2y02,|AB|,又C(5,0)到线段AB的距离h|CM|,所以SABC|AB|h,当且仅当9+y02212y02,即y0,A(,),B(,),或A(,),B(,)时等号成立,所以SABC的最大值为【答案点睛】此题考查根据焦点和准线关系求抛物线方程,根据直线与抛物线位置关系

17、求解三角形面积的最值,表示三角形的面积关系常涉及韦达定理整体代入,抛物线中需要考虑设点坐标的技巧,处理最值问题常用函数单调性求解或均值不等式求最值.19、(1)(2)见解析,【答案解析】(1)根据题意设出事件,列出概率,运用公式求解;(2)由题得,X的所有可能取值为,根据(1)和变量对应的事件,可得变量对应的概率,即可得分布列和期望值.【题目详解】(1)记2家小店分别为A,B,A店有i人休假记为事件(,1,2),B店有i人,休假记为事件(,1,2),发生调剂现象的概率为P.则,.所以.答:发生调剂现象的概率为.(2)依题意,X的所有可能取值为0,1,2.则,.所以X的分布表为:X012P所以.

18、【答案点睛】本题是一道考查概率和期望的常考题型.20、()单调递减区间为,单调递增区间为;().【答案解析】()求出函数的定义域以及导数,利用导数可求出该函数的单调递增区间和单调递减区间;()由题意可知在上恒成立,分和两种情况讨论,在时,构造函数,利用导数证明出在上恒成立;在时,经过分析得出,然后构造函数,利用导数证明出在上恒成立,由此得出,进而可得出实数的最大值.【题目详解】()函数的定义域为.当时,. 令,解得(舍去),.当时,所以,函数在上单调递减;当时,所以,函数在上单调递增.因此,函数的单调递减区间为,单调递增区间为;()由题意,可知在上恒成立.(i)若,构造函数,则,.又,在上恒成立.所以,函数在上单调递增,当时,在上恒成立.(ii)若,构造函数,.,所以,函数在上单调递增.恒成立,即,即.由题意,知在上恒成

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论