湖南省张家界市2023学年中考数学模拟试题含答案解析_第1页
湖南省张家界市2023学年中考数学模拟试题含答案解析_第2页
湖南省张家界市2023学年中考数学模拟试题含答案解析_第3页
湖南省张家界市2023学年中考数学模拟试题含答案解析_第4页
湖南省张家界市2023学年中考数学模拟试题含答案解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、湖南省张家界市2023学年中考数学模拟测试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在测试卷卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等设小明打字速度为x个/分钟,则列方程正确的是()ABCD2计算的结果是()A1B1C1xD3一、单选题二次函数的图象如图所示,对称轴为x=1,给出下列结论:abc4ac;4

2、a+2b+c0;2a+b=0.其中正确的结论有:A4个B3个C2个D1个4根据下表中的二次函数的自变量与函数的对应值,可判断该二次函数的图象与轴( )A只有一个交点B有两个交点,且它们分别在轴两侧C有两个交点,且它们均在轴同侧D无交点5下列图形中,既是轴对称图形又是中心对称图形的是ABCD6在下列函数中,其图象与x轴没有交点的是()Ay=2xBy=3x+1Cy=x2Dy=7已知,则的值为ABCD8如图,菱形ABCD的对角线相交于点O,过点D作DEAC, 且DE=AC,连接CE、OE,连接AE,交OD于点F,若AB=2,ABC=60,则AE的长为()ABCD9下列选项中,能使关于x的一元二次方程

3、ax24x+c=0一定有实数根的是()Aa0Ba=0Cc0Dc=010如图,三角形纸片ABC,AB10cm,BC7cm,AC6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则AED的周长为()A9cmB13cmC16cmD10cm二、填空题(本大题共6个小题,每小题3分,共18分)11小芸一家计划去某城市旅行,需要做自由行的攻略,父母给她分配了一项任务:借助网络评价选取该城市的一家餐厅用餐.小芸根据家人的喜好,选择了甲、乙、丙三家餐厅,对每家餐厅随机选取了1000条网络评价,统计如下:评价条数 等级餐厅五星四星三星二星一星合计甲53821096129271000

4、乙460187154169301000丙4863888113321000(说明:网上对于餐厅的综合评价从高到低,依次为五星、四星、三星、二星和一星.)小芸选择在_(填甲”、“乙或“丙”)餐厅用餐,能获得良好用餐体验(即评价不低于四星)的可能性最大.12若关于x的方程有增根,则m的值是 13如图,在RtAOB中,AOB=90,OA=2,OB=1,将RtAOB绕点O顺时针旋转90后得到RtFOE,将线段EF绕点E逆时针旋转90后得到线段ED,分別以O、E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分的面积是_14将一副三角尺如图所示叠放在一起,则的值是 15已知二次函数f(x

5、)=x2-3x+1,那么f(2)=_16如图,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足PBC是等腰三角形的点P有且只有3个,则AB的长为 三、解答题(共8题,共72分)17(8分)2019年我市在“展销会”期间,对周边道路进行限速行驶.道路AB段为监测区,C、D为监测点(如图).已知C、D、B在同一条直线上,且,CD=400米,.求道路AB段的长;(精确到1米)如果AB段限速为60千米/时,一辆车通过AB段的时间为90秒,请判断该车是否超速,并说明理由.(参考数据:,)18(8分)如图矩形ABCD中AB=6,AD=4,点P为AB上一点,把矩形ABCD沿过P点的直线l折叠,使D

6、点落在BC边上的D处,直线l与CD边交于Q点(1)在图(1)中利用无刻度的直尺和圆规作出直线l(保留作图痕迹,不写作法和理由)(2)若PDPD,求线段AP的长度;求sinQDD19(8分)如图,AB、AC分别是O的直径和弦,ODAC于点D过点A作O的切线与OD的延长线交于点P,PC、AB的延长线交于点F(1)求证:PC是O的切线;(2)若ABC60,AB10,求线段CF的长20(8分)(1)问题:如图1,在四边形ABCD中,点P为AB上一点,DPC=A=B=90求证:ADBC=APBP(2)探究:如图2,在四边形ABCD中,点P为AB上一点,当DPC=A=B=时,上述结论是否依然成立说明理由(

7、3)应用:请利用(1)(2)获得的经验解决问题:如图3,在ABD中,AB=6,AD=BD=1点P以每秒1个单位长度的速度,由点A 出发,沿边AB向点B运动,且满足DPC=A设点P的运动时间为t(秒),当DC的长与ABD底边上的高相等时,求t的值21(8分)自学下面材料后,解答问题。分母中含有未知数的不等式叫分式不等式。如: 0,b0,则0;若a0,b0;若a0,b0,则0;若a0,则0,则 或 ,(1)若0的解集.22(10分)如图,AB是O的直径,点C在AB的延长线上,AD平分CAE交O于点D,且AECD,垂足为点E(1)求证:直线CE是O的切线(2)若BC3,CD3,求弦AD的长23(12

8、分)如图1,一枚质地均匀的正六面体骰子的六个面分别标有数字1,2,3,4,5,6,如图2,正方形ABCD的顶点处各有一个圈,跳圈游戏的规则为:游戏者每掷一次骰子,骰子朝上的那面上的数字是几,就沿正方形的边按顺时针方向连续跳几个边长。如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落在圈D;若第二次掷得2,就从圈D开始顺时针连续跳2个边长,落得圈B;设游戏者从圈A起跳.小贤随机掷一次骰子,求落回到圈A的概率P1.小南随机掷两次骰子,用列表法求最后落回到圈A的概率P2,并指出他与小贤落回到圈A的可能性一样吗?24如图,四边形ABCD中,E点在AD上,其中BAE=BCE=ACD=90,且BC

9、=CE,求证:ABC与DEC全等2023学年模拟测试卷参考答案(含详细解析)一、选择题(共10小题,每小题3分,共30分)1、C【答案解析】解:因为设小明打字速度为x个/分钟,所以小张打字速度为(x+6)个/分钟,根据关系:小明打120个字所用的时间和小张打180个字所用的时间相等,可列方程得,故选C【答案点睛】本题考查列分式方程解应用题,找准题目中的等量关系,难度不大2、B【答案解析】根据同分母分式的加减运算法则计算可得【题目详解】解:原式=-1,故选B【答案点睛】本题主要考查分式的加减法,解题的关键是熟练掌握同分母分式的加减运算法则3、B【答案解析】测试卷解析:二次函数的图象的开口向下,a

10、0,二次函数图象的对称轴是直线x=1, 2a+b=0,b0abc04a+2b+c0,故错误;二次函数图象的对称轴是直线x=1,2a+b=0,故正确综上所述,正确的结论有3个.故选B.4、B【答案解析】根据表中数据可得抛物线的对称轴为x=1,抛物线的开口方向向上,再根据抛物线的对称性即可作出判断.【题目详解】解:由题意得抛物线的对称轴为x=1,抛物线的开口方向向上则该二次函数的图像与轴有两个交点,且它们分别在轴两侧故选B.【答案点睛】本题考查二次函数的性质,属于基础应用题,只需学生熟练掌握抛物线的对称性,即可完成.5、D【答案解析】根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,把一个

11、图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【题目详解】解:A. 是轴对称图形,但不是中心对称图形,故不符合题意;B. 不是轴对称图形,是中心对称图形,故不符合题意;C. 是轴对称图形,但不是中心对称图形,故不符合题意;D. 既是轴对称图形又是中心对称图形,故符合题意故选D.【答案点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.6、D【答案解析】依据一次函数的图象,二次函数的图象以及反比例函数的图象进行判断即可

12、【题目详解】A正比例函数y=2x与x轴交于(0,0),不合题意;B一次函数y=-3x+1与x轴交于(,0),不合题意;C二次函数y=x2与x轴交于(0,0),不合题意;D反比例函数y=与x轴没有交点,符合题意;故选D7、C【答案解析】由题意得,4x0,x40,解得x=4,则y=3,则=,故选:C. 8、C【答案解析】在菱形ABCD中,OC=AC,ACBD,DE=OC,DEAC,四边形OCED是平行四边形,ACBD,平行四边形OCED是矩形,在菱形ABCD中,ABC=60,ABC为等边三角形,AD=AB=AC=2,OA=AC=1,在矩形OCED中,由勾股定理得:CE=OD=,在RtACE中,由勾

13、股定理得:AE=;故选C.点睛:本题考查了菱形的性质,先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出COD=90,证明四边形OCED是矩形,再根据菱形的性质得出AC=AB,再根据勾股定理得出AE的长度即可.9、D【答案解析】测试卷分析:根据题意得a1且=,解得且a1观察四个答案,只有c1一定满足条件,故选D考点:根的判别式;一元二次方程的定义10、A【答案解析】测试卷分析:由折叠的性质知,CD=DE,BC=BE易求AE及AED的周长解:由折叠的性质知,CD=DE,BC=BE=7cmAB=10cm,BC=7cm,AE=ABBE=3cmAED的周长=AD+DE+AE=AC+AE=

14、6+3=9(cm)故选A点评:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等二、填空题(本大题共6个小题,每小题3分,共18分)11、丙【答案解析】不低于四星,即四星与五星的和居多为符合题意的餐厅【题目详解】不低于四星,即比较四星和五星的和,丙最多故答案是:丙【答案点睛】考查了可能性的大小和统计表解题的关键是将问题转化为比较四星和五星的和的多少12、1【答案解析】方程两边都乘以最简公分母(x2),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于1的未知数的值求出x的值,然后代入进行计算即可求出

15、m的值:方程两边都乘以(x2)得,2xm=2(x2)分式方程有增根,x2=1,解得x=222m=2(22),解得m=113、【答案解析】作DHAE于H, 根据勾股定理求出AB, 根据阴影部分面积=ADE的面积+EOF的面积+扇形AOF的面积-扇形DEF的面积,利用扇形面积公式计算即可.【题目详解】解:如图作DHAE于H,AOB=, OA=2, OB=1,AB=,由旋转的性质可知OE=OB=1,DE=EF=AB=,可得DHEBOA,DH=OB=1,阴影部分面积=ADE的面积+EOF的面积+扇形AOF的面积-扇形DEF的面积,故答案:【答案点睛】本题主要考查扇形的计算公式,正确表示出阴影部分的面积

16、是计算的关键14、【答案解析】测试卷分析:BAC=ACD=90,ABCDABEDCE在RtACB中B=45,AB=AC在RtACD中,D=30,15、-1【答案解析】根据二次函数的性质将x=2代入二次函数解析式中即可.【题目详解】 f(x)=x2-3x+1 f(2)= 22-32+1=-1.故答案为-1.【答案点睛】本题考查的知识点是二次函数的性质,解题的关键是熟练的掌握二次函数的性质.16、1【答案解析】测试卷分析:如图,当AB=AD时,满足PBC是等腰三角形的点P有且只有3个,P1BC,P2BC是等腰直角三角形,P3BC是等腰直角三角形(P3B=P3C),则AB=AD=1,故答案为1考点:

17、矩形的性质;等腰三角形的性质;勾股定理;分类讨论三、解答题(共8题,共72分)17、 (1)AB1395 米;(2)没有超速【答案解析】(1)先根据tanADC2求出AC,再根据ABC35结合正弦值求解即可(2)根据速度的计算公式求解即可.【题目详解】解:(1)ACBC,C90,tanADC2,CD400,AC800,在RtABC中,ABC35,AC800,AB1395 米;(2)AB1395,该车的速度55.8km/h60千米/时,故没有超速【答案点睛】此题重点考察学生对三角函数值的实际应用,熟练掌握三角函数值的实际应用是解题的关键.18、(1)见解析;(2) 【答案解析】(1)根据题意作出

18、图形即可;(2)由(1)知,PD=PD,根据余角的性质得到ADP=BPD,根据全等三角形的性质得到AD=PB=4,得到AP=2;根据勾股定理得到PD=2,根据三角函数的定义即可得到结论【题目详解】(1)连接PD,以P为圆心,PD为半径画弧交BC于D,过P作DD的垂线交CD于Q,则直线PQ即为所求;(2)由(1)知,PD=PD,PDPD,DPD=90,A=90,ADP+APD=APD+BPD=90,ADP=BPD,在ADP与BPD中,ADPBPD,AD=PB=4,AP= BDPB=ABAP=6AP=4,AP=2;PD=2,BD=2CD=BC- BD=4-2=2PD=PD,PDPD,DD=PD=2

19、,PQ垂直平分DD,连接Q D则DQ= DQQDD=QDDsinQDD=sinQDD=【答案点睛】本题考查了作图-轴对称变换,矩形的性质,折叠的性质,全等三角形的判定和性质,等腰直角三角形的性质,正确的作出图形是解题的关键19、(1)证明见解析(2)1 【答案解析】(1)连接OC,可以证得OAPOCP,利用全等三角形的对应角相等,以及切线的性质定理可以得到:OCP=90,即OCPC,即可证得;(2)先证OBC是等边三角形得COB=60,再由(1)中所证切线可得OCF=90,结合半径OC=1可得答案【题目详解】(1)连接OCODAC,OD经过圆心O,AD=CD,PA=PC在OAP和OCP中,OA

20、POCP(SSS),OCP=OAPPA是半O的切线,OAP=90,OCP=90,即OCPC,PC是O的切线(2)OB=OC,OBC=60,OBC是等边三角形,COB=60AB=10,OC=1由(1)知OCF=90,CF=OCtanCOB=1【答案点睛】本题考查了切线的性质定理以及判定定理,以及直角三角形三角函数的应用,证明圆的切线的问题常用的思路是根据切线的判定定理转化成证明垂直的问题20、(2)证明见解析;(2)结论成立,理由见解析;(3)2秒或2秒【答案解析】(2)由DPC=A=B=90可得ADP=BPC,即可证到ADPBPC,然后运用相似三角形的性质即可解决问题;(2)由DPC=A=B=

21、可得ADP=BPC,即可证到ADPBPC,然后运用相似三角形的性质即可解决问题;(3)过点D作DEAB于点E,根据等腰三角形的性质可得AE=BE=3,根据勾股定理可得DE=4,由题可得DC=DE=4,则有BC=2-4=2易证DPC=A=B根据ADBC=APBP,就可求出t的值【题目详解】解:(2)如图2,DPC=A=B=90,ADP+APD=90,BPC+APD=90,APD=BPC,ADPBPC,ADBC=APBP;(2)结论ADBC=APBP仍成立;证明:如图2,BPD=DPC+BPC,又BPD=A+APD,DPC+BPC=A+APD,DPC=A=,BPC=APD,又A=B=,ADPBPC

22、,ADBC=APBP;(3)如下图,过点D作DEAB于点E,AD=BD=2,AB=6,AE=BE=3DE=4,以D为圆心,以DC为半径的圆与AB相切,DC=DE=4,BC=2-4=2,AD=BD,A=B,又DPC=A,DPC=A=B,由(2)(2)的经验得ADBC=APBP,又AP=t,BP=6-t,t(6-t)=22,t=2或t=2,t的值为2秒或2秒【答案点睛】本题考查圆的综合题21、(1) 或;(2)x2或x0,则 或 ;故答案为: 或;(2)由上述规律可知,不等式转化为或,所以,x2或x1.【答案点睛】此题考查一元一次不等式组的应用,解题关键在于掌握掌握运算法则.22、(1)证明见解析(2) 【答案解析】(1)连结OC,如图,由AD平分EAC得到1=3,加上1=2,则3=2,于是可判断ODAE,根据平行线的性质得ODCE,然后根据切线的判定定理得到结论;(2)由CDBCAD,可得,推出CD2=CBCA,可得(3)2=3CA,推

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论