




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题
2、目要求的。1下列命题不正确的是()A研究两个变量相关关系时,相关系数r为负数,说明两个变量线性负相关B研究两个变量相关关系时,相关指数R2越大,说明回归方程拟合效果越好C命题“xR,cosx1”的否定命题为“x0R,cosx01”D实数a,b,ab成立的一个充分不必要条件是a3b32下列函数为奇函数的是( )ABCD3中国铁路总公司相关负责人表示,到2018年底,全国铁路营业里程达到13.1万公里,其中高铁营业里程2.9万公里,超过世界高铁总里程的三分之二,下图是2014年到2018年铁路和高铁运营里程(单位:万公里)的折线图,以下结论不正确的是( )A每相邻两年相比较,2014年到2015年
3、铁路运营里程增加最显著B从2014年到2018年这5年,高铁运营里程与年价正相关C2018年高铁运营里程比2014年高铁运营里程增长80%以上D从2014年到2018年这5年,高铁运营里程数依次成等差数列4为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为12,13),13,14),14,15),15,16),16,17,将其按从左到右的顺序分别编号为第一组,第二组,第五组,如图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )A6B8C12D185已知命题 椭圆上存在点
4、到直线的距离为1,命题椭圆与双曲线有相同的焦点,则下列命题为真命题的是( )ABCD6在中,则( )ABCD7方程至少有一个负根的充要条件是ABCD或8有个人排成一排照相,要求甲、乙、丙三人站在一起,则不同的排法种数为( )ABCD9在一次试验中,测得的四组值分别是A(1,2),B(3,4),C(5,6)D(7,8),则y与x之间的回归直线方程为()ABCD10多面体是由底面为的长方体被截面所截得到的,建立下图的空间直角坐标系,已知、.若为平行四边形,则点到平面的距离为ABCD11已知回归直线方程中斜率的估计值为,样本点的中心,则回归直线方程为( )ABCD12设,随机变量的分布列如图,则当在
5、内增大时,( )A减小B增大C先减小后增大D先增大后减小二、填空题:本题共4小题,每小题5分,共20分。13抛物线C:上一点到其焦点的距离为3,则抛物线C的方程为_.14如图,棱长为2的正方体中,是棱的中点,点P在侧面内,若垂直于,则的面积的最小值为_.15由曲线,坐标轴及直线围成的图形的面积等于_。16计算:01(三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在四棱锥PABCD中,已知PA平面ABCD,且四边形ABCD为直角梯形,ABCBAD,PAAD2,ABBC1.(1)求点D到平面PBC的距离;(2)设Q是线段BP上的动点,当直线CQ与DP所成的角最小
6、时,求二面角B-CQ-D的余弦值18(12分)如图,在三棱柱中,底面,点,分别为与的中点.(1)证明:平面.(2)求与平面所成角的正弦值.19(12分)如图,是正方形,是该正方体的中心,是平面外一点,平面,是的中点.(1)求证:平面;(2)求证:平面.20(12分)选修4-5:不等式选讲已知关于的不等式 ()当a=8时,求不等式解集; ()若不等式有解,求a的范围.21(12分)已知实数使得函数在定义域内为增函数;实数使得函数在上存在两个零点,且分别求出条件中的实数的取值范围;甲同学认为“是的充分条件”,乙同学认为“是的必要条件”,请判断两位同学的说法是否正确,并说明理由.22(10分)平面直
7、角坐标系中,直线的参数方程为,(为参数)以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为(1)写出直线的极坐标方程与曲线的直角坐标方程;(2)已知与直线平行的直线过点,且与曲线交于两点,试求参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据相关系数、相关指数的知识、全称命题的否定的知识,充分、必要条件的知识对四个选项逐一分析,由此得出命题不正确的选项.【详解】相关系数为负数,说明两个变量线性负相关,A选项正确. 相关指数越大,回归方程拟合效果越好,B选项正确.根据全称命题的否定是特称命题的知识可知C选项正
8、确.对于D选项,由于,所以是的充分必要条件,故D选项错误.所以选D.【点睛】本小题主要考查相关系数、相关指数的知识,考查全称命题的否定是特称命题,考查充要条件的判断,属于基础题.2、A【解析】试题分析:由题意得,令,则,所以函数为奇函数,故选A考点:函数奇偶性的判定3、D【解析】由折线图逐项分析即可求解【详解】选项,显然正确;对于,选项正确;1.6,1.9,2.2,2.5,2.9不是等差数列,故错.故选:D【点睛】本题考查统计的知识,考查数据处理能力和应用意识,是基础题4、C【解析】试题分析:由直方图可得分布在区间第一组与第二组共有21人,分布在区间第一组与第二组的频率分别为124,116,所
9、以第一组有12人,第二组8人,第三组的频率为136,所以第三组的人数:18人,第三组中没有疗效的有6人,第三组中有疗效的有12人考点:频率分布直方图5、B【解析】对于命题p,椭圆x2+4y2=1与直线l平行的切线方程是:直线,而直线,与直线的距离,所以命题p为假命题,于是p为真命题;对于命题q,椭圆2x2+27y2=54与双曲线9x216y2=144有相同的焦点(5,0),故q为真命题,从而(p)q为真命题。p(q),(p)(q),pq为假命题,本题选择B选项.6、D【解析】利用余弦定理计算出的值,于此可得出的值【详解】,由余弦定理得,因此,故选D【点睛】本题考查利用余弦定理求角,解题时应该根
10、据式子的结构确定对象角,考查计算能力,属于基础题7、C【解析】试题分析:时,显然方程没有等于零的根若方程有两异号实根,则;若方程有两个负的实根,则必有若时,可得也适合题意综上知,若方程至少有一个负实根,则反之,若,则方程至少有一个负的实根,因此,关于的方程至少有一负的实根的充要条件是故答案为C考点:充要条件,一元二次方程根的分布8、C【解析】总排法数为,故选C点睛:本题是排列中的相邻问题,用“捆绑法”求解,解决此问题分两步,第一步把要求相邻的三人捆绑在一起作为一个人,和其他3人看作是4人进行排列,第二步这三人之间也进行排列,然后用乘法原理可得解9、A【解析】分析:根据所给的这组数据,取出这组数
11、据的样本中心点,把样本中心点代入所给的四个选项中验证,若能够成立的只有一个,这一个就是线性回归方程详解:, 这组数据的样本中心点是(4,5)把样本中心点代入四个选项中,只有y=x+1成立,故选A点睛:本题考查求线性回归方程,一般情况下是一个运算量比较大的问题,解题时注意平均数的运算不要出错,注意系数的求法,运算时要细心,但是对于一个选择题,还有它特殊的加法10、D【解析】利用向量垂直数量积为零列方程组求出平面的法向量,结合,利用空间向量夹角余弦公式求出与所求法向量的夹角余弦,进而可得结果.【详解】建立如图所示的空间直角坐标系,则,设,为平行四边形, 由得,设为平面的法向量,显然不垂直于平面,故
12、可设,即,所以,又,设与的夹角为,则,到平面的距离为,故选D.【点睛】本题主要考查利用空间向量求点面距离,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.11、A【解析】由题意得在线性回归方程中,然后根据回归方程过样本点的中心得到的值,进而可得所求方程【详解】设线性回归方程中,由题意得,又回归直线过样本点的中心,回归直线方程为故选A【点睛】本题考查线性回归方程
13、的求法,其中回归直线经过样本点的中心时解题的关键,利用这一性质可求回归方程中的参数,也可求样本数据中的未知参数,属于基础题12、D【解析】先求数学期望,再求方差,最后根据方差函数确定单调性.【详解】,先增后减,因此选D.【点睛】二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用抛物线的定义,求出p,即可求C的方程;【详解】抛物线C:y22px(p0)的准线方程为x,由抛物线的定义可知13,解得p4,C的方程为y28x;故答案为【点睛】本题考查抛物线的定义与方程,熟记定义是关键,属于基础题14、【解析】建立空间直角坐标系,由,求得,得到,进而求得三角形的面积的最小值,得到答案.【
14、详解】以D点为空间直角坐标系的原点,以DC所在直线为y轴,以DA所在直线为x轴,以 为z轴,建立空间直角坐标系.则点,所以.因为,所以,因为,所以,所以,因为B(2,2,0),所以,所以因为,所以当时,.因为BCBP,所以.故答案为:.【点睛】本题主要考查了空间向量的应用,其中解答建立适当的空间直角坐标系,利用向量的坐标表示,以及向量的数量积的运算,求得的最小值是解答的关键,着重考查了推理与运算能力,属于中档试题.15、1【解析】根据定积分求面积【详解】.【点睛】本题考查利用定积分求面积,考查基本分析求解能力,属基础题.16、e-【解析】试题分析:01(e考点:定积分三、解答题:共70分。解答
15、应写出文字说明、证明过程或演算步骤。17、(1).(2).【解析】分析:(1)利用等体积法即可;(2)建立空间直角坐标系,利用换元法可得,再结合函数在上的单调性,计算即得结论.详解:(1)SBCD=BCAB=, 由于PA平面ABCD,从而PA即为三棱锥P-BCD的高,故VP-BCD=SBCDPA=.设点D到平面PBC的距离为h.由PA平面ABCD得PABC,又由于BCAB,故BC平面PAB,所以BCPB.由于BP,所以SPBC=BCPB=.故VD-BCP=SBCPh=h因为VP-BCD=VD-BCP,所以h=.(2)以, 为正交基底建立如图所示的空间直角坐标系A-xyz,则各点的坐标为B(1,
16、0,0),C(1,1,0),D(0,2,0),P(0,0,2)设,(01)因为(1,0,2),所以(,0,2),由(0,1,0),得(,1,2),又(0,2,2),从而cos,.设12t,t1,3,则cos2,.当且仅当t,即时,|cos,|的最大值为.因为ycos x在上是减函数,此时直线CQ与DP所成角取得最小值又因为BP,所以BQBP.(0,1,0),(1,1,2)设平面PCB的一个法向量为m(x,y,z),则m0,m0,即得: y0,令z1,则x2.所以m(2,0,1)是平面PCB的一个法向量又(,1,2)(,1,),(1,1 ,0)设平面DCQ的一个法向量为n(x,y,z),则n0,
17、n0,即取x4,则 y4,z7,所以n(4,4,7)是平面DCQ的一个法向量从而cosm,n,又由于二面角B-CQ-D为钝角,所以二面角B-CQ-D的余弦值为.点睛:本题考查求二面角的三角函数值,考查利用空间向量解决问题的能力,注意解题方法的积累.18、(1)见解析(2)【解析】(1)先连接,根据线面平行的判定定理,即可得出结论;(2)先以为原点建立如图所示的空间直角坐标系,求出直线的的方向向量与平面的法向量,由向量夹角公式求出向量夹角余弦值,即可得出结果.【详解】(1)证明:如图,连接,.在三棱柱中,为的中点.又因为为的中点,所以.又平面,平面,所以平面.(2)解:以为原点建立如图所示的空间
18、直角坐标系,则,所以,.设平面的法向量为,则,令,得.记与平面所成角为,则 .【点睛】本题主要考查线面平行的判定、以及线面角的向量求法,熟记线面平行的判定定理以及空间向量的方法即可,属于常考题型.19、证明见解析【解析】试题分析:(1)要证与平面平行,而过的平面与平面的交线为,因此只要证即可,这可由中位线定理得证;(2)要证垂直于平面,就是要证与平面内两条相交直线垂直,正方形中对角线与是垂直的,因此只要再证,这由线面垂直的性质或定义可得试题解析:证明:(1)连接,四边形为正方形,为的中点,是的中点,是的中位线.,平面,平面,平面.(2)平面,平面,四边形是正方形,平面,平面,平面.考点:线面平行与线面垂直的判断20、 (1).(2).【解析】分析:()利用零点分类讨论法解不等式. ()转化为,再求分段函数的最小值得解.详解:(I)当a=8时,则所以即不等式解集为. (II)令,由题意可知;又因为所以,即. 点睛:(1)本题主要考查零点讨论法解不等式,考查不等式的有解问题,意在考查学生对这些知识的掌握水平和分类讨论思想方法. (2)第2问可以转化为,注意是最小值,不是最大值,要理解清楚,这里是有解问题,不是恒成立问题.21、(1),(2)甲、乙两同学的判断均不正确,理由见解析【解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 45430-2025法庭科学伪造人像深度伪造检验
- 2024年注册会计师考试的知识获取渠道与试题及答案
- 2024年注册会计师必读学习资源试题及答案
- 妊娠剧吐脑病护理
- 发热患者的护理注意事项
- 绩效评估体系的建立与优化计划
- 预算控制工作方案计划
- 第13课《一、创建站点》教学设计 2023-2024学年初中信息技术人教版七年级上册
- 推动变革社团工作变革计划
- 激发学生创造力的班级活动设计计划
- 2025年辽宁盘锦市盘山县公开招聘事业单位工作人员221名历年高频重点模拟试卷提升(共500题附带答案详解)
- 2025年江苏紫金财产保险股份有限公司招聘笔试参考题库含答案解析
- 放射医学检查技术及操作规范
- 2025年工程设备供应合同范本
- 《剪板机安全操作培训》课件
- 无人机物流配送方案
- 手术患者转运交接课件
- DB51T 1466-2012 马尾松二元立木材积表、单木出材率表
- 《氧气吸入法》课件
- 小零散工程施工安全培训
- 2025年中考语文复习:散文阅读 试题解析+习题演练
评论
0/150
提交评论