




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题
2、卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1随着国家二孩政策的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如下表.非一线城市一线城市总计愿生452065不愿生132235总计5842100附表:0.0500.0100.0013.8416.63510.828由算得,参照附表,得到的正确结论是( )A在犯错误的概率不超过的前提下,认为“生育意愿与城市级别有关”B在犯错误的概率不超过的前提下,认为“生育意愿与城市级别无关”C有以上的把握认为“生育意愿与城市级
3、别有关”D有以上的把握认为“生育意愿与城市级别无关”2已知曲线在点处的切线的倾斜角为,则的值为( )ABCD3已知曲线在点处的切线平行于直线,那么点的坐标为( )A或B或CD4已知曲线,给出下列命题:曲线关于轴对称;曲线关于轴对称;曲线关于原点对称;曲线关于直线对称;曲线关于直线对称,其中正确命题的个数是( )A1B2C3D45现有一条零件生产线,每个零件达到优等品的概率都为.某检验员从该生产线上随机抽检个零件,设其中优等品零件的个数为.若,则( )ABCD6若x,y满足约束条件,则的最大值为()AB1C2D47曲线在处的切线的斜率为( )ABCD8将5件不同的奖品全部奖给3个学生,每人至少一
4、件奖品,则不同的获奖情况种数是( )A150B210C240D3009在回归分析中,的值越大,说明残差平方和( )A越小B越大C可能大也可能小D以上都不对10近年来随着我国在教育科研上的投入不断加大,科学技术得到迅猛发展,国内企业的国际竞争力得到大幅提升某品牌公司一直默默拓展海外市场,在海外设了多个分支机构,现需要国内公司外派大量中青年员工该企业为了解这两个年龄层员工是否愿意被外派工作的态度,按分层抽样的方式从中青年员工中随机调查了位,得到数据如下表:愿意被外派不愿意被外派合计中年员工青年员工合计由并参照附表,得到的正确结论是附表:0.100.010.0012.7066.63510.828A在
5、犯错误的概率不超过10%的前提下,认为 “是否愿意外派与年龄有关”;B在犯错误的概率不超过10%的前提下,认为 “是否愿意外派与年龄无关”;C有99% 以上的把握认为“是否愿意外派与年龄有关”;D有99% 以上的把握认为“是否愿意外派与年龄无关”11世界杯参赛球队共32支,现分成8个小组进行单循环赛,决出16强(各组的前2名小组出线),这16个队按照确定的程序进行淘汰赛,决出8强,再决出4强,直到决出冠、亚军和第三名、第四名,则比赛进行的总场数为()A64B72C60D5612设实数满足约束条件,则的最大值为( )AB1C6D9二、填空题:本题共4小题,每小题5分,共20分。13若对任意实数,
6、都有,则_。14从总体中抽取一个样本是5,6,7,8,9,则总体方差的估计值是_.15已知球的半径为24cm,一个圆锥的高等于这个球的直径,而且球的表面积等于圆锥的表面积,则这个圆锥的体积是_ cm1(结果保留圆周率)16已知函数是定义在R上的偶函数,满足,若时,则函数的零点个数为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知抛物线的焦点为,圆:与轴的一个交点为,圆的圆心为,为等边三角形.求抛物线的方程;设圆与抛物线交于两点,点为抛物线上介于两点之间的一点,设抛物线在点处的切线与圆交于两点,在圆上是否存在点,使得直线均为抛物线的切线,若存在求出点坐标(用表示
7、);若不存在,请说明理由.18(12分)求的二项展开式中的第5项的二项式系数和系数.19(12分)已知椭圆C的中心为坐标原点O,焦点F1,F1在x轴上,椭圆C短轴端点和焦点所组成的四边形为正方形,且椭圆C短轴长为1(1)求椭圆C的标准方程(1)P为椭圆C上一点,且F1PF1,求PF1F1的面积20(12分)设1,其中pR,n,(r0,1,2,n)与x无关(1)若10,求p的值;(2)试用关于n的代数式表示:;(3)设,试比较与的大小21(12分)已知函数(为自然对数的底数).(1)当时,求函数的极值;(2)若函数在区间上单调递增,求的取值范围.22(10分)在数列an中,a(1)求a2(2)猜
8、想an参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】K29.6166.635,有99%以上的把握认为“生育意愿与城市级别有关”,本题选择C选项.点睛:独立性检验得出的结论是带有概率性质的,只能说结论成立的概率有多大,而不能完全肯定一个结论,因此才出现了临界值表,在分析问题时一定要注意这点,不可对某个问题下确定性结论,否则就可能对统计计算的结果作出错误的解释2、D【解析】利用导数求出,由可求出的值【详解】,由题意可得,因此,故选D【点睛】本题考查导数的几何意义,考查导数的运算、直线的倾斜角和斜率之间的关系,意在考查函数
9、的切线斜率与导数之间的关系,考查计算能力,属于中等题3、B【解析】分析:设的坐标为,则,求出函数的导数,求得切线的斜率,由两直线平行的条件可得的方程,求得的值从而可得结果.详解:设的坐标为,则,的导数为,在点处的切线斜率为,由切线平行于直线,可得,解得,即有或,故选B.点睛:本题考查导数的运用:求切线的斜率,考查导数的几何意义:函数在某点处的导数即为曲线在该点处的切线斜率,考查两直线平行的条件:斜率相等,属于基础题. 4、C【解析】根据定义或取特殊值对曲线的对称性进行验证,可得出题中正确命题的个数.【详解】在曲线上任取一点,该点关于轴的对称点的坐标为,且,则曲线关于轴对称,命题正确;点关于轴的
10、对称点的坐标为,且,则曲线关于轴对称,命题正确;点关于原点的对称点的坐标为,且,则曲线关于原点对称,命题正确;在曲线上取点,该点关于直线的对称点坐标为,由于,则曲线不关于直线对称,命题错误;在曲线上取点,该点关于直线的对称点的坐标为,由于,则曲线不关于直线对称,命题错误.综上所述,正确命题的个数为.故选:C.【点睛】本题考查曲线对称性的判定,一般利用对称性的定义以及特殊值法进行判断,考查推理能力,属于中等题.5、C【解析】由求出的范围,再由方差公式求出值【详解】,化简得,即,又,解得或,故选C【点睛】本题考查概率公式与方差公式,掌握这两个公式是解题的关键,本题属于基础题6、D【解析】已知x,y
11、满足约束条件,画出可行域,目标函数zy2x,求出z与y轴截距的最大值,从而进行求解;【详解】x,y满足约束条件,画出可行域,如图:由目标函数zy2x的几何意义可知,z在点A出取得最大值,A(3,2),zmax22(3)4,故选:D【点睛】在解决线性规划的小题时,常用步骤为:由约束条件画出可行域理解目标函数的几何意义,找出最优解的坐标将坐标代入目标函数,求出最值;也可将可行域各个角点的坐标代入目标函数,验证,求出最值7、B【解析】因为,所以.故选B.8、A【解析】将5本不同的书分成满足题意的3组有1,1,3与2,2,1两种,分成1、1、3时,有C53A33=60种分法,分成2、2、1时,根据分组
12、公式90种分法,所以共有60+90=150种分法,故选A点睛:一般地,如果把不同的元素分配给几个不同对象,并且每个不同对象可接受的元素个数没有限制,那么实际上是先分组后排列的问题,即分组方案数乘以不同对象数的全排列数9、A【解析】分析:根据的公式和性质,并结合残差平方和的意义可得结论详解:用相关指数的值判断模型的拟合效果时,当的值越大时,模型的拟合效果越好,此时说明残差平方和越小;当的值越小时,模型的拟合效果越差,此时说明残差平方和越大故选A点睛:主要考查对回归分析的基本思想及其初步应用等知识的理解,解题的关键是熟知有关的概念和性质,并结合条件得到答案10、A【解析】由公式计算出的值,与临界值
13、进行比较,即可得到答案。【详解】由题可得:故在犯错误的概率不超过10%的前提下,认为 “是否愿意外派与年龄有关”, 有90% 以上的把握认为“是否愿意外派与年龄有关,所以答案选A;故答案选A【点睛】本题主要考查独立性检验,解题的关键是正确计算出的值,属于基础题。11、A【解析】分析:先确定小组赛的场数,再确定淘汰赛的场数,最后求和.详解:因为8个小组进行单循环赛,所以小组赛的场数为因为16个队按照确定的程序进行淘汰赛,所以淘汰赛的场数为因此比赛进行的总场数为48+16=64,选A.点睛:本题考查分类计数原理,考查基本求解能力.12、D【解析】作出不等式组表示的平面区域,作出目标函数对应的直线,
14、结合图像求得结果【详解】解:画出实数满足约束条件表示的可行域,由得,则表示直线在轴上的截距,截距越大,越大,作出目标函数对应的直线由图可知将直线向上平移,经过点时,直线的截距最大,由,得点的坐标为所以的最大值为故选:D【点睛】此题考查画不等式组表示的平面区域,考查数形结合求函数的最值.二、填空题:本题共4小题,每小题5分,共20分。13、6【解析】将原式变为,从而可得展开式的通项,令可求得结果.【详解】由题意得:则展开式通项为:当,即时, 本题正确结果:【点睛】本题考查利用二项式定理求解指定项的系数的问题,关键是能够构造出合适的形式来进行展开.14、【解析】先求出样本平均数,由此能求出样本方差
15、,由此能求出总体方差的估计值【详解】解:从总体中抽取一个样本是5,6,7,8,9,样本平均数为,样本方差为,总体方差的估计值是1故答案为:1【点睛】本题考查总体方差的估计值的求法,考查平均数、总体方差等基础知识,考查运算求解能力,属于基础题15、【解析】结合球的表面积等于圆锥的表面积,建立等式,计算半径r,利用体积计算公式,即可。【详解】结合题意可知圆锥高h=48,设圆锥 底面半径为r,则圆锥表面积 ,计算得到 ,所以圆锥的体积【点睛】本道题考查了立体几何表面积和体积计算公式,结合题意,建立等式,计算半径r,即可,属于中等难度的题。16、2【解析】由题意得:的周期为2,且其图象关于轴对称,函数
16、的零点个数即为函数与函数图象的交点个数,然后作出图象即可.【详解】由题意得:的周期为2,且其图象关于轴对称函数的零点个数即为函数与函数图象的交点个数,在同一坐标系中作出两函数的图象如下由图象观察可知,共有两个交点故答案为:2【点睛】一个复杂函数的零点个数问题常常是转化为两个常见函数的交点个数问题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、;存在,.【解析】(1)由题意,从而求得抛物线方程;(2)设,可设出切线方程及,并设出过点的直线与抛物线相切,从而联立抛物线知,同理,可表示过点N的切线,从而计算两直线相交的交点,于是可得答案.【详解】是等边三角形,原点为中点,半径圆
17、,半径,抛物线设,过点作抛物线的两条切线(异于直线)交于点,并设切线,由替换法则,抛物线在点处的切线方程为即记设过点的直线与抛物线相切,代入抛物线方程得,即根据韦达定理,由可得, 同理可得,切线 联立与圆可得,韦达定理可得,联立、并代入可求得,代入可求得 .所以即切线的交点在圆上,故存在圆上一点满足均为抛物线的切线.【点睛】本题主要考查直线与抛物线的位置关系,意在考查学生的计算能力,分析能力,转化能力,难度较大.18、二项式系数为,系数为. 【解析】分析:根据二项式系数的展开式得到结果.详解:,二项式系数为,系数为. 点睛:这个题目考查的是二项式中的特定项的系数问题,在做二项式的问题时,看清楚
18、题目是求二项式系数还是系数,还要注意在求系数和时,是不是缺少首项;解决这类问题常用的方法有赋值法,求导后赋值,积分后赋值等19、(1);(1)【解析】(1)由已知可得关于的方程组,求得的值,即可得到椭圆的方程;(1)在中,由已知结合椭圆的定义及余弦定理和三角形的面积公式,即可求解【详解】(1)设椭圆的标准方程为,椭圆的短轴端点和焦点所组成的四边形为正方形,且椭圆短轴长为1,解得,椭圆的标准方程为(1)由椭圆定义知 又,由余弦定理得 联立解得 所以三角形的面积【点睛】本题主要考查了椭圆的定义的应用,标准方程的求解,以及几何性质的应用,其中解答熟练应用椭圆的焦点三角形,以及余弦定理和三角形的面积公式是解答的关键,着重考查了推理与运算能力,属于基础题20、 (1) .(2) .(3) .【解析】分析:(1)先根据二项式展开式通项公式得,解得p的值;(2)先由得,再得, 等式两边对求导,得;最后令得结果,(3)先求,化简不等式为比较与的大小关系,先计算归纳得大小关系,利用数学归纳法给予证明.详解:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高三上学期《时间颗粒》主题班会课件
- 行进间高手上篮教案
- 2025年电动轮椅项目可行性研究报告
- 2025年生命支持系统仪器外壳项目可行性研究报告
- 2025年玉容粉项目可行性研究报告
- 2025春新版三下科学•概念总结(背诵版)
- 宜昌市虎亭区2024-2025学年三下数学期末质量跟踪监视模拟试题含解析
- 江苏省南京栖霞区重点名校2024-2025学年初三中考模拟卷(二)英语试题含答案
- 西安医学院《数字地形测量学(2)》2023-2024学年第二学期期末试卷
- 漯河职业技术学院《城市规划原理A》2023-2024学年第二学期期末试卷
- 2023年浙江杭州市属事业单位统一招聘工作人员371人笔试参考题库(共500题)答案详解版
- 国家开放大学《人文英语3》章节测试参考答案
- 江苏省四星级高中评估标准及评价细则
- 经济学说史教程第四版题库
- 高铁站智能化设计方案
- GB/T 12727-2023核电厂安全重要电气设备鉴定
- 岗位安全操作规程
- 促进林业产业高质量发展的建议
- 体外诊断试剂的应急预案
- 公共场所卫生监督培训课件
- 水泥混凝土路面打裂压稳施工工法
评论
0/150
提交评论