2022年四川省乐山十校高二数学第二学期期末达标测试试题含解析_第1页
2022年四川省乐山十校高二数学第二学期期末达标测试试题含解析_第2页
2022年四川省乐山十校高二数学第二学期期末达标测试试题含解析_第3页
2022年四川省乐山十校高二数学第二学期期末达标测试试题含解析_第4页
2022年四川省乐山十校高二数学第二学期期末达标测试试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高二下数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1函数的零点所在的区间是( )A(0,1)B(1,2)C(2,3)D(3,4)2已知复数,则复数在复平面内对应的点在( )A第一象限B第二象限C第三象限D第四象限3设曲线在点处的切线方

2、程为,则( )A1B2C3D44乘积可表示为( )ABCD5设i是虚数单位,则复数i3A-iBiC1D-16设 则=( )ABCD7在一次连环交通事故中,只有一个人需要负主要责任,但在警察询问时,甲说:“主要责任在乙”;乙说:“丙应负主要责任”;丙说“甲说的对”;丁说:“反正我没有责任”四人中只有一个人说的是真话,则该事故中需要负主要责任的人是( )A甲B乙C丙D丁8用数学归纳法证明(,)时,第一步应验证( )ABCD9设,当时,不等式恒成立,则的取值范围是ABCD10设集合A=1,2,4,B=3,4,则集合A4B1,4C2,3D1,2,3,411已知某几何体的三视图如图所示,则该几何体的表面

3、积为()A16B(10)C4(5)D6(5)12对于实数,若或,则是的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13某课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应的城市数分别为4,12,8,若用分层抽样抽取6个城市,则丙组中应抽取的城市数为_14已知下列命题:若,则“”是“”成立的充分不必要条件;若椭圆的两个焦点为,且弦过点,则的周长为16;若命题“”与命题“或”都是真命题,则命题一定是真命题;若命题:,则:其中为真命题的是_(填序号)15设集合A,Bx|yln(x23x),则AB中元素的个数

4、是_.16已知球O的半径为R,A,B,C三点在球O的球面上,球心O到平面ABC的距离为12R,AB=AC=BC=3,则球O的表面积为三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在正四棱锥P-BCD中,正方形ABCD的边长为32,高OP=6,E是侧棱PD上的点且PE=13PD,F是侧棱PA上的点且PF=12(1)求平面EFG的一个法向量n;(2)求直线AG与平面EFG所成角的大小;(3)求点A到平面EFG的距离d18(12分)如图,在三棱柱ABC-A1B1C1中,AC=BC=1,ACBC(1)若B1C=1,求直线AB(2)在(1)的条件下,求二面角A1(3)若B1

5、C=2,CG平面A1ABB1,G为垂足,令CG=pCA+qCB+rCB19(12分)遇龙塔建于明代万历年间,简体砖石结构,屹立于永州市城北潇水东岸,为湖南省重点文物保护单位之一游客乘船进行观光,到达潇水河河面的处时测得塔顶在北偏东45的方向上,然后向正北方向行驶后到达处,测得此塔顶在南偏东的方向上,仰角为,且,若塔底与河面在同一水平面上,求此塔的高度20(12分)在平面直角坐标系中,直线的参数方程为(为参数).以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,圆的极坐标方程为.(1)求直线的普通方程与圆的直角坐标方程;(2)设动点在圆上,动线段的中点的轨迹为,与直线交点为,且

6、直角坐标系中,点的横坐标大于点的横坐标,求点的直角坐标.21(12分)已知函数.(1)若曲线在处的切线过点,求的值;(2)是否存在实数,使恒成立?若存在,求出的值;若不存在,请说明理山 .22(10分)某手机代工厂对生产线进行升级改造评估,随机抽取了生产线改造前、后100个生产班次的产量进行对比,改造前、后手机产量(单位:百部)的频率分布直方图如下:(1)记表示事件:“改造前手机产量低于5000部”,视频率为概率,求事件的概率;(2)填写下面列联表,并根据列联表判断是否有的把握认为手机产量与生产线升级改造有关:手机产量部手机产量部改造前改造后(3)根据手机产量的频率分布直方图,求改造后手机产量

7、的中位数的估计值(精确到0.01).参考公式:随机变量的观测值计算公式:,其中.临界值表:0.1000.0500.0100.0012.7063.8416.63510.828参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】易知函数是上的增函数,结合零点存在性定理可判断出函数零点所在区间.【详解】函数是上的增函数,是上的增函数,故函数是上的增函数.,则时,;时,因为,所以函数在区间上存在零点.故选:B.【点睛】本题考查了函数零点所在区间,利用函数的单调性与零点存在性定理是解决本题的关键,属于基础题.2、D【解析】因为,所以

8、复数在复平面内对应的点为,在第四象限,选D.3、D【解析】利用导数的几何意义得直线的斜率,列出a的方程即可求解【详解】因为,且在点处的切线的斜率为3,所以,即.故选:D【点睛】本题考查导数的几何意义,考查运算求解能力,是基础题4、A【解析】根据对排列公式的认识,进行分析,解答即可【详解】最大数为,共有个自然数连续相乘根据排列公式可得故选【点睛】本题是一道比较基础的题型,主要考查的是排列与组合的理解,掌握排列数的公式是解题的关键5、C【解析】分析:由条件利用两个复数代数形式的除法运算,虚数单位i的幂运算性质,计算求得结果详解:i3复数i3故选C点睛:本题主要考查两个复数代数形式的乘除法,虚数单位

9、i的幂运算性质,属于基础题6、D【解析】分析:先根据复数除法法则求,再根据共轭复数定义得详解:因为所以选D.点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为7、A【解析】假定甲说的是真话,则丙说“甲说的对”也是真话,这与四人中只有一个人说的是真话矛盾,所以假设不成立,故甲说的是假话;假定乙说的是真话,则丁说“反正我没有责任”也为真话,这与四人中只有一个人说的是真话矛盾,所以假设不成立,故乙说的是假话;假定丙说的是真话,由知甲说的也是真话,这与四人中只有一个人说的是真话矛盾,所以假设不成立,故丙说的是假

10、话;综上可得,丁说的真话,甲乙丙三人说的均为假话,即乙丙丁没有责任,所以甲负主要责任,故选A.8、B【解析】直接利用数学归纳法写出时左边的表达式即可【详解】解:用数学归纳法证明,时,第一步应验证时是否成立,即不等式为:;故选:【点睛】在数学归纳法中,第一步是论证时结论是否成立,此时一定要分析不等式左边的项,不能多写也不能少写,否则会引起答案的错误9、A【解析】当时,不等式恒成立当时,不等式恒成立令,则当时,即在上为减函数当时,即在上为增函数,即令,则当时,即在上为减函数当时,即在上为增函数或故选A点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若

11、就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立,转化为;(3)若恒成立,可转化为.10、A【解析】利用交集的运算律可得出集合AB。【详解】由题意可得AB=4,故选:A【点睛】本题考查集合的交集运算,考查计算能力,属于基础题。11、C【解析】分析:由该几何体的三视图判断出组合体各部分的几何特征,以及各部分的几何体相关几何量的数据,由面积公式求出该几何体的表面积.详解:该几何体是两个相同的半圆锥与一个半圆柱的组合体,其表面积为:S444(5).故选:C.点睛:本题考查了由三视图求几何体的表面积,解题的关键是根据三视图判断几何体的结构特征及相关几何量的数据.12、B【解析】

12、分别判断充分性和必要性,得到答案.【详解】取 此时 不充分若或等价于且,易知成立,必要性故答案选B【点睛】本题考查了充分必要条件,举出反例和转化为逆否命题都可以简化运算.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】根据抽取6个城市作为样本,得到每个个体被抽到的概率,用概率乘以丙组的数目,即可得到结果.【详解】城市有甲、乙、丙三组,对应的城市数分别为4 ,12,8.本市共有城市数24 ,用分层抽样的方法从中抽取一个容量为6的样本,每个个体被抽到的概率是,丙组中对应的城市数8,则丙组中应抽取的城市数为,故答案为2.【点睛】本题主要考查分层抽样的应用以及古典概型概率公式的应用,属

13、于基础题.分层抽样适合总体中个体差异明显,层次清晰的抽样,其主要性质是,每个层次,抽取的比例相同.14、【解析】逐一分析所给的各个说法:a,b,cR,“ac2bc2”“ab”,反之,当时,由不成立。若,则“”是“”成立的充分不必要条件; 故正确;若椭圆的两个焦点为F1,F2,且弦AB过点F1,则ABF2的周长为4a=20,故不正确;若命题“p”与命题“p或q”都是真命题,则p是假命题,所以命题q一定是真命题,故正确;若命题p:xR,x2+x+10,则p:xR,x2+x+10,故错误。故答案为:。15、1.【解析】求出A中不等式的解集,确定出解集的自然数解确定A,求出B中x的范围确定出B,找出两

14、集合的交集,即可作出判断【详解】由A中不等式变形得:222x24,即2x4,xN,A=0,1,2,3,4,由B中y=ln(x23x),得到x23x0,解得:x0或x3,即B=x|x0或x3,则AB=4,即AB中元素个数为1,故答案为:1【点睛】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键16、16【解析】试题分析:设平面ABC截球所得球的小圆半径为,则2r=3sin60=23,r=3,由考点:球的表面积【名师点睛】球的截面的性质:用一个平面去截球,截面是一个圆面,如果截面过球心,则截面圆半径等于球半径,如果截面圆不过球心,则截面圆半径小于球半径,设截面圆半径为,球半径为R,球心到截

15、面圆距离为R,则d=R2三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)n=(0,1,2)(2)直线AG与平面EFG所成角=arcsin(3)6【解析】(1)建立空间直角坐标系,求出EF=(3,2,-1),EG=(-2,4,-2),设平面EFG的一个法向量n=(x,y,z),由nEF(2)求出AG=(-8,2,2),由sin=|cosAG,n(3)求出EA=(6,2,-4),由点A到平面EFG的距离d=【详解】(1)在正四棱锥P-BCD中,正方形ABCD的边长为32,高OP=6E是侧棱PD上的点且PE=13PD,F是侧棱PAG是PBC的重心.如图建立空间直角坐标系D(

16、0,-6,0),P(0,0,6),E(0,-2,4),A(6,0,0),B(0,6,0),C(-6,0,0),G(-2,2,2),EF=(3,2,-1),EG=(-2,4,设平面EFG的一个法向量n=(x,y,z)则nEF=3x+2y-z=0平面EFG的一个法向量n=(0,1,2)(2)AG=(-8,2,则sin=|直线AG与平面EFG所成角=arcsin(3)EA=(6,2,点A到平面EFG的距离d=|【点睛】本题主要考查了平面的法向量、线面角、点到平面的距离的求法,空间中线线、线面、面面间的位置关系及数形结合思想,属于中档题18、(1)6;(2)34;(3)q=49,【解析】(1)建立如图

17、所示的空间直角坐标系,设平面A1ACC1的法向量为n=(x,y,z),则n(2)在(1)的条件下,平面A1ACC1的法向量为n=(1,0,1),取平面ABC的法向量m=(0,0,(3)作CMAB,M为垂足.由B1C平面ABC.可得B1CAB,AB平面MCB作CGMB1,垂足为G,则CG平面ABB1.利用三角形面积计算公式、勾股定理及其CG=pCA【详解】解:(1)建立如图所示的空间直角坐标系,C(0,0,0),B1(0,0,1),A(0,-1,0),CA=(0,-1,0),CC1=(-1,0,设平面A1ACC1的法向量为n=(x,y-y=-x+z=0,取x=1,则n=(1,0,1)cos直线A

18、B1与平面A1(2)在(1)的条件下,平面A1ACC1的法向量为取平面ABC的法向量m=(0,0,1)则cos由图可知:二面角A1二面角A1-AC-B的平面角为(3)作CMAB,M为垂足由B1C平面又B1AB平面MCB平面B1CM平面作CGMB1,垂足为G,则CG平面在RtMCB1,CM=ACCBB1B1B可得CG=CBCG=pCA+qCB+rCB(49,-49q=49,p=4【点睛】本题考查了空间位置关系、空间角、法向量的应用、数量积的运算性质、向量相等,考查了推理能力与计算能力,属于难题19、【解析】根据正弦定理求得,然后在直角三角形中求得,即可得到答案【详解】由题意,在中,故又,故由正弦

19、定理得:,解得,因为,所以,所以【点睛】本题主要考查了解三角形的实际应用问题,其中解答中熟练应用正弦定理和直角三角形的性质是解答的关键,着重考查了推理与运算能力,属于基础题20、 (1) 的直角坐标方程是.直线的普通方程为. (2) .【解析】(1)消去参数后可得的普通方程,把化成,利用互化公式可得的直角方程.(2)设点,则,利用在椭圆上可得的直角方程,联立直线的普通方程和的直角坐标方程可得的直角坐标.【详解】解:(1)由,得,将互化公式代上式,得,故圆的直角坐标方程是.由,得,即.所以直线的普通方程为.(2)设点.由中点坐标公式得曲线的直角坐标方程为.联立,解得,或.故点的直角坐标是.【点睛】极坐标转化为直角坐标,关键是,而直角坐标转化为极坐标,关键是参数方程化为直角方法,关键是消去参数,消参的方法有反解消参、平方消参、交轨法等21、(1)或(2)存在,使得不等式成立,详见解析【解析】(1)求出导函数,得切线斜率,写出切线方程,由切线过点可求得参数,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论