版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知变量,由它们的样本数据计算得到的观测值,的部分临界值表如下:0.100.050.0250
2、.0100.0052.7063.8415.0246.6357.879以下判断正确的是( )A在犯错误的概率不超过0.05的前提下认为变量有关系B在犯错误的概率不超过0.05的前提下认为变量没有关系C有的把握说变量有关系D有的把握说变量没有关系2已知数列满足(,且是递减数列,是递增数列,则A B C D3欧拉公式(为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数集,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,根据欧拉公式可知,表示的复数的虚部为( )ABCD4设等比数列的前n项和为,公比,则( )ABCD5若,则的最小值为(
3、 )A2B4C6D86如图,梯形中,将沿对角线折起,设折起后点的位置为,使二面角为直二面角,给出下面四个命题: ;三棱锥的体积为;平面;平面平面;其中正确命题的个数是( )A1B2C3D47一个盒子里装有大小、形状、质地相同的12个球,其中黄球5个,蓝球4个,绿球3个.现从盒子中随机取出两个球,记事件为“取出的两个球颜色不同”,事件为“取出一个黄球,一个绿球”,则ABCD8已知 x1+i=1-yi,其中 x,y 是实数,i 是虚数单位,则 x+yiA1+2i B1-2i C2+i D2-i9已知双曲线 的右焦点为F2,若C的左支上存在点M,使得直线bxay0是线段MF2的垂直平分线,则C的离心
4、率为()AB2CD510为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:收入(万元)8.28.610.011.311.9支出(万元)6.27.58.08.59.8根据表中数据可得回归直线方程,据此估计,该社区一户年收入为20万元家庭的年支出约为( )A15.2B15.4C15.6D15.811用反证法证明命题“设为实数,则方程至多有一个实根”时,要做的假设是A方程没有实根B方程至多有一个实根C方程至多有两个实根D方程恰好有两个实根12已知,则等于( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知矩阵,则矩阵的逆矩阵为_.14已知抛物
5、线的焦点为,准线与轴的交点为为抛物线上的一点,且满足,则 =_.15有甲、乙、丙三项不同任务,甲需由人承担,乙、丙各需由人承担,从人中选派人承担这三项任务,不同的选法共有_种(用数字作答)16甲、乙、丙、丁四位同学中仅有一人申请了北京大学的自主招生考试,当他们被问到谁申请了北京大学的自主招生考试时,甲说:“丙或丁申请了”;乙说:“丙申请了”;丙说:“甲和丁都没有申请”;丁说:“乙申请了”,如果这四位同学中只有两人说的是对的,那么申请了北京大学的自主招生考试的同学是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)设函数,其中是的导函数.(1)令,求的表达式;(2)若
6、恒成立,求实数的取值范围.18(12分)如图,四棱锥中,.(1)求证:;(2)求钝二面角的余弦值.19(12分)食品安全一直是人们关心和重视的问题,学校的食品安全更是社会关注的焦点.某中学为了加强食品安全教育,随机询问了36名不同性别的中学生在购买食品时是否看保质期,得到如下“性别”与“是否看保质期”的列联表:男女总计看保质期822不看保持期414总计(1)请将列联表填写完整,并根据所填的列联表判断,能否有的把握认为“性别”与“是否看保质期”有关?(2)从被询问的14名不看保质期的中学生中,随机抽取3名,求抽到女生人数的分布列和数学期望.附:,().临界值表:0.150.100.050.025
7、0.0100.0050.0012.0722.7063.8415.0246.6357.87910.82820(12分)四个不同的小球放入编号为1,2,3,4的四个盒子中.(1)若每个盒子放一个球,则共有多少种不同的放法?(2)恰有一个空盒的放法共有多少种?21(12分)已知某厂生产的电子产品的使用寿命(单位:小时)服从正态分布,且,(1)现从该厂随机抽取一件产品,求其使用寿命在的概率;(2)现从该厂随机抽取三件产品,记抽到的三件产品使用寿命在的件数为,求的分布列和数学期望22(10分)在四棱锥中,底面ABCD是边长为1的正方形,平面ABCD,PA=AB,M,N分别为PB,AC的中点,()求证:M
8、N /平面PAD ()求点B到平面AMN的距离参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】分析:根据所给的观测值,对照临界值表中的数据,即可得出正确的结论详解:观测值,而在观测值表中对应于3.841的是0.05,在犯错误的概率不超过0.05的前提下认为变量有关系故选:A点睛:本题考查了独立性检验的应用问题,是基础题2、D【解析】试题分析:由可得:,又是递减数列,是递增数列,所以,即,由不等式的性质可得:,又因为,即,所以,即,同理可得:;当数列的项数为偶数时,令,可得:,将这个式子相加得:,所以,则,所以选D考点:
9、1裂项相消法求和;2等比数列求和;3、C【解析】先由题意得到,进而可求出结果.【详解】由题意可得:,所以虚部为.故选C【点睛】本题主要考查复数的应用,熟记复数的概念即可,属于常考题型.4、D【解析】由等比数列的通项公式与前项和公式分别表示出与,化简即可得到的值【详解】因为等比数列的公比,则,故选D【点睛】本题考查等比数列的通项公式与前项和公式,属于基础题。5、C【解析】利用均值不等式求解即可【详解】(当且仅当n3时等号成立)故选:C【点睛】本题主要考查了均值不等式求最值注意把握好一定,二正,三相等的原则6、C【解析】取BD中点O,根据面面垂直性质定理得平面,再根据线面垂直判定与性质定理、面面垂
10、直判定定理证得平面以及平面平面;利用锥体体积公式求三棱锥的体积,最后根据反证法说明不成立.【详解】因为,所以为等腰直角三角形,因为,所以,从而为等腰直角三角形,取BD中点O,连接,如图,因为二面角为直二面角,所以平面平面,因为为等腰直角三角形,所以平面平面,平面,因此平面,所以三棱锥的体积为,正确;因为平面,平面,所以,因为,,平面,所以平面;即正确;因为平面,平面;所以;由已知条件得,平面,因此平面,因为平面,所以平面平面;即正确;如果,而由平面,平面,所以,因为,平面,所以平面;因为平面;即,与矛盾,所以不正确;故选:C【点睛】本题考查面面垂直性质与判定定理、线面垂直判定与性质定理以及锥体
11、体积公式,考查基本分析论证与求解能力,属中档题.7、D【解析】分析:先求取出的两个球颜色不同得概率,再求取出一个黄球,一个绿球得概率可,最后根据条件概率公式求结果.详解:因为所以,选D.点睛:本题考查条件概率计算公式,考查基本求解能力.8、D【解析】x1+i=x(1-i)9、C【解析】设P为直线与的交点,则OP为的中位线,求得到渐近线的距离为b,运用中位线定理和双曲线的定义,以及离心率的公式,计算可得所求值【详解】,直线是线段的垂直平分线,可得到渐近线的距离为,且,可得,即为,即,可得故选C【点睛】本题考查双曲线的定义、方程和性质,考查三角形的中位线定理,考查方程思想和运算能力,属于中档题10
12、、C【解析】由于回归直线方程过中心点,所以先求出的值,代入回归方程中,求出,可得回归直线方程,然后令可得结果【详解】解:因为,所以,所以回归直线方程为所以当时, 故选: C【点睛】此题考查线性回归方程,涉及平均值的计算,属于基础题11、D【解析】反证法证明命题时,首先需要反设,即是假设原命题的否定成立.【详解】命题“设为实数,则方程至多有一个实根”的否定为“设为实数,则方程恰好有两个实根”;因此,用反证法证明原命题时,只需假设方程恰好有两个实根.故选D【点睛】本题主要考查反证法,熟记反设的思想,找原命题的否定即可,属于基础题型.12、C【解析】分析:根据条件概率的计算公式,即可求解答案.详解:
13、由题意,根据条件概率的计算公式,则,故选C.点睛:本题主要考查了条件概率的计算公式的应用,其中熟记条件概率的计算公式是解答的关键,着重考查了推理与运算能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分析:根据逆矩阵公式得结果.详解:因为的逆矩阵为,所以矩阵A的逆矩阵为点睛:求逆矩阵方法:(1)公式法:的逆矩阵为,(2)定义法:.14、【解析】分析:利用抛物线的性质,过作准线的垂线交准线于,则,则,在中可表示出,计算即可得到答案详解:过作准线的垂线交准线于则故点睛:本题主要考查了抛物线的简单性质,解答本题的关键是记清抛物线上点到焦点距离等于到准线距离,灵活运用抛物线的定义来解
14、题15、60【解析】分析:先从5人中选4人(组合),再给4个人分派3项任务,甲需2人,乙、丙各需由人。详解:先从5人中选4人(组合),再给4个人分派3项任务,甲需2人,乙、丙各需由人(乙、丙派的人不一样故要排列)。共有60种。 点睛:分配问题,先分组(组合)后分派(排列)。16、乙【解析】先假设甲乙丙丁中一个人说的是对的.然后再逐个去判断其他三个人的说法.最后看是否满足题意,不满足排除【详解】解:先假设甲说的对,即甲或乙申请了.但申请人只有一个,(1)如果是甲,则乙说“丙申请了”就是错的,丙说“甲和丁都没申请”就是错的,丁说“乙申请了”也是错的,这样三个错的,不能满足题意,故甲没申请.(2)如
15、果是乙,则乙说“丙申请了”就是错的,丙说“甲和丁都没申请”可以理解为申请人有可能是乙,丙,戊,但是不一定是乙,故说法不对,丁说“乙申请了”也是对的,这样说的对的就是两个是甲和丁.满足题意故答案为:乙【点睛】本题考查了合情推理的应用,属于中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】分析:(1)求出的解析式,依次计算即可得出猜想;(2)已知恒成立,即 恒成立设 (x0),则(x)=, 对 进行讨论,求出 的最小值,令 恒成立即可;详解:由题设得,g(x) (x0) (1)由已知,g1(x),g2(x)g(g1(x),g3(x),可得gn(x).
16、 下面用数学归纳法证明当n1时,g1(x),结论成立假设nk时结论成立,即gk(x).那么,当nk1时,gk1(x)g(gk(x),即结论成立由可知, 结论对nN成立所以gn(x). (2)已知f(x)ag(x)恒成立,即ln(1x)恒成立设(x)ln(1x) (x0),则(x)=, 当a1时,(x)0(仅当x0,a1时等号成立),(x)在0,)上单调递增,又(0)0,(x)0在0,)上恒成立,a1时,ln(1x)恒成立(仅当x0时等号成立) 当a1时,对x(0,a1有(x)0,(x)在(0,a1上单调递减,(a1)1时,存在x0,使(x)0,故知ln(1x)不恒成立 综上可知,a的取值范围是
17、(,1 点睛:本题考查了函数的单调性判断与最值计算,数学归纳法证明,分类讨论思想,属于中档题18、(1)见解析;(2)【解析】(1)推导出,从而平面,由此能证明.(2)过点在平面内作直线,由(1)以点为坐标原点建立空间直角坐标系,利用向量法求出钝二面角的余弦值.【详解】(1)证明:在中,且,由余弦定理,得.过点作,可知四边形是矩形,且.又,故,于是有,即.又,且,平面,.(2)过点在平面内作直线,由(1)可知,和直线两两垂直,如图,以点为坐标原点建立空间直角坐标系.由题意,可得,.设平面的法向量为,由得令,得,即.再取平面的一个法向量.设二面角的大小为,则,即二面角的余弦值为.【点睛】本题考查
18、了线面垂直的判定定理、定义,空间向量法求面面角,解题的关键是建立恰当的空间直角坐标系,属于基础题.19、(1)有的把握认为“性别”与“是否看食品保质期”有关系(1)分布列见解析,【解析】(分析:1)将列联表填写完整,求出,然后判断性别与是否看保质期之间是否有关系(1)判断的取值为0,1,13,求出概率,然后得到分布列,求解期望即可详解:(1)填表如下:男女总计看保质期81411不看保质期10414总计181836根据列联表中的数据,可得.故有的把握认为“性别”与“是否看食品保质期”有关系. (1)由题意可知,的所有可能取值为, ,所以. 点睛:本题考查离散型随机变量的分布列期望的求法,对立检验的应用,考查计算能力20、 (1)24;(2)144.【解析】分析:(1)直接把4个球全排列即得共有多少种不同的放法.(2)利用乘法分步原理解答.详解:(1)每个盒子放一个球,共有=24种不同的放法.(2)先选后排,分三步完成:第一步:四个盒子中选一只为空盒,有4种选法;第二步:选两球为一个元素,有种选法;第三步:三个元素放入三个盒中,有种放法.故共有466=144种放法.点睛:(1)本题主要考查计数原理和排列组合的综合应用,意在考查学生对这些知识的掌握水平和分析推理能力.(2)排列组合常用解法有一般问题直接法、相邻问题捆绑法、不相邻问题插空法、特殊对象优先法、等概率问题缩倍法、至少问题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工作管理课程设计
- 液压系统课程设计接单
- 2024年版知识产权许可使用合同(专利)
- 班长竞选演讲稿
- 2025年山东淄博经济开发区事业单位综合类岗位招聘工作人员3人历年管理单位笔试遴选500模拟题附带答案详解
- 2025年山东济宁高新区事业单位招聘工作人员(卫生类)15人管理单位笔试遴选500模拟题附带答案详解
- 2025年山东济宁市邹城市事业单位招考管理单位笔试遴选500模拟题附带答案详解
- 2025年山东济宁北湖省级旅游度假区教育事业单位招聘59人历年管理单位笔试遴选500模拟题附带答案详解
- 2025年山东济南商河县事业单位招聘107人历年管理单位笔试遴选500模拟题附带答案详解
- 2025年山东沂水经济开发区管理委员急需紧缺人才引进8人管理单位笔试遴选500模拟题附带答案详解
- DB13-T 5931-2024 珍珠棉生产企业安全生产技术条件
- 2025届上海曹杨二中高二物理第一学期期末综合测试模拟试题含解析
- 会议会务服务投标方案投标文件(技术方案)
- 成都大学《Python数据分析》2023-2024学年期末试卷
- 电大本科【人文英语3】2023-2024期末试题及答案(试卷代号:1379)
- 2024年医院消毒隔离制度范文(六篇)
- 2024年资格考试-机动车检测维修工程师考试近5年真题附答案
- 大学生法律基础学习通超星期末考试答案章节答案2024年
- 2024年大学试题(文学)-外国文学考试近5年真题集锦(频考类试题)带答案
- 2024-2025学年三年级上册数学苏教版学考名师卷期末数学试卷
- 三级人工智能训练师(高级)职业技能等级认定考试题及答案
评论
0/150
提交评论