分类高级课题AdvancedTopicsonClassification教学课件_第1页
分类高级课题AdvancedTopicsonClassification教学课件_第2页
分类高级课题AdvancedTopicsonClassification教学课件_第3页
分类高级课题AdvancedTopicsonClassification教学课件_第4页
分类高级课题AdvancedTopicsonClassification教学课件_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、Advanced Topics on ClassificationQuan Zou (邹 权) (Ph.D.& Assistant Professor)9/22/20221OutlineImbalance Binary ClassificationMulti Class, Multi Label ClassificationMulti Instance ClassificationSemi-supervised and Transductive ClassificationEnsemble LearningOthers9/22/20222Imbalance binary classificat

2、ionApplication:Credit Card CheatSpam IdentificationFinding OilBioinformatics9/22/20223Imbalance binary classificationStrategy of samplingOver-samplingUnder-samplingRandom-samplingSpecial-sampling (SMOTE)Strategy of costEqual to aboveOne-class leaning9/22/20224mulan9/22/202269/22/20227Multi Instance

3、ClassificationDrug Design, Image UnderstandingPackage, Instance DD9/22/202299/22/202210Semi-supervised and Transductive ClassificationSemi-supervised ClassificationUnlabeled samples are importantCo-training and Tri-training9/22/202211Transductive Classification9/22/2022129/22/202213Ensemble learning

4、Bagging9/22/202214Ensemble learningRandom Forest9/22/202216Ensemble learning for Class Imbalance Problem9/22/202217StrategyFirst, the negative set is divided randomly into several subsets equally. Every subset together with the positive set is a class balance training set. Then several different cla

5、ssifiers are selected and trained with these balance training sets. They will vote for the last prediction when facing new samples.The samples will be added to the next two classifiers training sets if they are misclassified.Reference邹权, 郭茂祖, 刘扬, 王峻. 类别不平衡的分类方法及在生物信息学中的应用. 计算机研究与发展. 2010,47(8):1407-1414 X.-Y. Liu, J. Wu, and Z.-H. Zhou. Exploratory undersampling for class-imbalance learning. IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics, 2009, 39(2): 539-550 9/22/202219OthersActive learningLazy learningParallel learning (mahout)OptimizationFeatures Sele

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论