




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年高考数学模拟测试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求
2、的。1已知点是双曲线上一点,若点到双曲线的两条渐近线的距离之积为,则双曲线的离心率为( )ABCD22若函数在处取得极值2,则( )A-3B3C-2D23秦九韶是我国南宁时期的数学家,普州(现四川省安岳县)人,他在所著的数书九章中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例.若输入、的值分别为、,则输出的值为( ) ABCD4已知数列的前n项和为,且对于任意,满足,则( )ABCD5M、N是曲线y=sinx与曲线y=cosx的两个不同的交点,则|MN|的最小值为()ABCD26元代数学家朱世杰的数学名著算术启蒙是中国古代代数
3、学的通论,其中关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.下图是源于其思想的一个程序图,若,则输出的( )A3B4C5D67设x、y、z是空间中不同的直线或平面,对下列四种情形:x、y、z均为直线;x、y是直线,z是平面;z是直线,x、y是平面;x、y、z均为平面.其中使“且”为真命题的是( )ABCD8设双曲线的左右焦点分别为,点.已知动点在双曲线的右支上,且点不共线.若的周长的最小值为,则双曲线的离心率的取值范围是( )ABCD9若数列为等差数列,且满足,为数列的前项和,则( )ABCD10如图在直角坐标系中,过原点作曲线的切线,切点为,过点分别作、轴的
4、垂线,垂足分别为、,在矩形中随机选取一点,则它在阴影部分的概率为( )ABCD11如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积是( )ABCD812设数列是等差数列,.则这个数列的前7项和等于( )A12B21C24D36二、填空题:本题共4小题,每小题5分,共20分。13已知,则展开式中的系数为_14已知关于x的不等式(axa24)(x4)0的解集为A,且A中共含有n个整数,则当n最小时实数a的值为_15若变量,满足约束条件,则的最大值为_16如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,则该几何体的体积为_.三、解答题:共70分。解
5、答应写出文字说明、证明过程或演算步骤。17(12分)2019年6月,国内的运营牌照开始发放.从到,我们国家的移动通信业务用了不到20年的时间,完成了技术上的飞跃,跻身世界先进水平.为了解高校学生对的消费意愿,2019年8月,从某地在校大学生中随机抽取了1000人进行调查,样本中各类用户分布情况如下:用户分类预计升级到的时段人数早期体验用户2019年8月至2019年12月270人中期跟随用户2020年1月至2021年12月530人后期用户2023年1月及以后200人我们将大学生升级时间的早晚与大学生愿意为套餐支付更多的费用作比较,可得出下图的关系(例如早期体验用户中愿意为套餐多支付5元的人数占所
6、有早期体验用户的).(1)从该地高校大学生中随机抽取1人,估计该学生愿意在2021年或2021年之前升级到的概率;(2)从样本的早期体验用户和中期跟随用户中各随机抽取1人,以表示这2人中愿意为升级多支付10元或10元以上的人数,求的分布列和数学期望;(3)2019年底,从这1000人的样本中随机抽取3人,这三位学生都已签约套餐,能否认为样本中早期体验用户的人数有变化?说明理由.18(12分)已知函数.(1)当时,求不等式的解集;(2)若对任意成立,求实数的取值范围.19(12分)某工厂的机器上有一种易损元件A,这种元件在使用过程中发生损坏时,需要送维修处维修工厂规定当日损坏的元件A在次日早上
7、8:30 之前送到维修处,并要求维修人员当日必须完成所有损坏元件A的维修工作每个工人独立维修A元件需要时间相同维修处记录了某月从1日到20日每天维修元件A的个数,具体数据如下表:日期 1 日 2 日 3 日 4 日 5 日 6 日 7 日 8 日 9 日 10 日 元件A个数 9 15 12 18 12 18 9 9 24 12 日期 11 日 12 日 13 日 14 日 15 日 16 日 17 日 18 日 19 日 20 日 元件A个数 12 24 15 15 15 12 15 15 15 24 从这20天中随机选取一天,随机变量X表示在维修处该天元件A的维修个数()求X的分布列与数学
8、期望;()若a,b,且b-a=6,求最大值;()目前维修处有两名工人从事维修工作,为使每个维修工人每天维修元件A的个数的数学期望不超过4个,至少需要增加几名维修工人?(只需写出结论)20(12分)已知函数,其中为实常数.(1)若存在,使得在区间内单调递减,求的取值范围;(2)当时,设直线与函数的图象相交于不同的两点,证明:.21(12分)某单位准备购买三台设备,型号分别为已知这三台设备均使用同一种易耗品,提供设备的商家规定:可以在购买设备的同时购买该易耗品,每件易耗品的价格为100元,也可以在设备使用过程中,随时单独购买易耗品,每件易耗品的价格为200元.为了决策在购买设备时应购买的易耗品的件
9、数.该单位调查了这三种型号的设备各60台,调査每台设备在一个月中使用的易耗品的件数,并得到统计表如下所示.每台设备一个月中使用的易耗品的件数678型号A30300频数型号B203010型号C04515将调查的每种型号的设备的频率视为概率,各台设备在易耗品的使用上相互独立.(1)求该单位一个月中三台设备使用的易耗品总数超过21件的概率;(2)以该单位一个月购买易耗品所需总费用的期望值为决策依据,该单位在购买设备时应同时购买20件还是21件易耗品?22(10分)已知函数的最大值为,其中.(1)求实数的值;(2)若求证:.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题
10、5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【答案解析】设点的坐标为,代入椭圆方程可得,然后分别求出点到两条渐近线的距离,由距离之积为,并结合,可得到的齐次方程,进而可求出离心率的值.【题目详解】设点的坐标为,有,得.双曲线的两条渐近线方程为和,则点到双曲线的两条渐近线的距离之积为,所以,则,即,故,即,所以.故选:A.【答案点睛】本题考查双曲线的离心率,构造的齐次方程是解决本题的关键,属于中档题.2、A【答案解析】对函数求导,可得,即可求出,进而可求出答案.【题目详解】因为,所以,则,解得,则.故选:A.【答案点睛】本题考查了函数的导数与极值,考查了学生的运算求
11、解能力,属于基础题.3、B【答案解析】列出循环的每一步,由此可得出输出的值.【题目详解】由题意可得:输入,;第一次循环,继续循环;第二次循环,继续循环;第三次循环,跳出循环;输出.故选:B.【答案点睛】本题考查根据算法框图计算输出值,一般要列举出算法的每一步,考查计算能力,属于基础题.4、D【答案解析】利用数列的递推关系式判断求解数列的通项公式,然后求解数列的和,判断选项的正误即可【题目详解】当时,所以数列从第2项起为等差数列,所以,故选:【答案点睛】本题考查数列的递推关系式的应用、数列求和以及数列的通项公式的求法,考查转化思想以及计算能力,是中档题5、C【答案解析】两函数的图象如图所示,则图
12、中|MN|最小,设M(x1,y1),N(x2,y2),则x1=,x2=,|x1-x2|=,|y1-y2|=|sinx1-cosx2|=+=,|MN|=.故选C.6、B【答案解析】分析:根据流程图中的可知,每次循环的值应是一个等比数列,公比为;根据流程图中的可知,每次循环的值应是一个等比数列,公比为,根据每次循环得到的的值的大小决定循环的次数即可.详解: 记执行第次循环时,的值记为有,则有;记执行第次循环时,的值记为有,则有.令,则有,故,故选B.点睛:本题为算法中的循环结构和数列通项的综合,属于中档题,解题时注意流程图中蕴含的数列关系(比如相邻项满足等比数列、等差数列的定义,是否是求数列的前和
13、、前项积等).7、C【答案解析】举反例,如直线x、y、z位于正方体的三条共点棱时用垂直于同一平面的两直线平行判断.用垂直于同一直线的两平面平行判断.举例,如x、y、z位于正方体的三个共点侧面时.【题目详解】当直线x、y、z位于正方体的三条共点棱时,不正确; 因为垂直于同一平面的两直线平行,正确;因为垂直于同一直线的两平面平行,正确;如x、y、z位于正方体的三个共点侧面时, 不正确.故选:C.【答案点睛】此题考查立体几何中线面关系,选择题一般可通过特殊值法进行排除,属于简单题目.8、A【答案解析】依题意可得即可得到,从而求出双曲线的离心率的取值范围;【题目详解】解:依题意可得如下图象,所以则所以
14、所以所以,即故选:A【答案点睛】本题考查双曲线的简单几何性质,属于中档题.9、B【答案解析】利用等差数列性质,若,则 求出,再利用等差数列前项和公式得【题目详解】解:因为 ,由等差数列性质,若,则得,为数列的前项和,则故选:【答案点睛】本题考查等差数列性质与等差数列前项和.(1)如果为等差数列,若,则 (2)要注意等差数列前项和公式的灵活应用,如.10、A【答案解析】设所求切线的方程为,联立,消去得出关于的方程,可得出,求出的值,进而求得切点的坐标,利用定积分求出阴影部分区域的面积,然后利用几何概型概率公式可求得所求事件的概率.【题目详解】设所求切线的方程为,则,联立,消去得,由,解得,方程为
15、,解得,则点,所以,阴影部分区域的面积为,矩形的面积为,因此,所求概率为.故选:A.【答案点睛】本题考查定积分的计算以及几何概型,同时也涉及了二次函数的切线方程的求解,考查计算能力,属于中等题.11、A【答案解析】由三视图还原出原几何体,得出几何体的结构特征,然后计算体积【题目详解】由三视图知原几何体是一个四棱锥,四棱锥底面是边长为2的正方形,高为2,直观图如图所示,故选:A【答案点睛】本题考查三视图,考查棱锥的体积公式,掌握基本几何体的三视图是解题关键12、B【答案解析】根据等差数列的性质可得,由等差数列求和公式可得结果.【题目详解】因为数列是等差数列,所以,即,又,所以,故故选:B【答案点
16、睛】本题主要考查了等差数列的通项公式,性质,等差数列的和,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13【答案解析】由题意求定积分得到的值,再根据乘方的意义,排列组合数的计算公式,求出展开式中的系数【题目详解】已知,则,它表示4个因式的乘积故其中有2个因式取,一个因式取,剩下的一个因式取1,可得的项故展开式中的系数故答案为:1【答案点睛】本题主要考查求定积分,乘方的意义,排列组合数的计算公式,属于中档题14、-1【答案解析】讨论三种情况,a0时,根据均值不等式得到a(a)14,计算等号成立的条件得到答案.【题目详解】已知关于x的不等式(axa14)(x4)0,a0时,x(a)
17、(x4)0,其中a0,故解集为(a,4),由于a(a)14,当且仅当a,即a1时取等号,a的最大值为4,当且仅当a4时,A中共含有最少个整数,此时实数a的值为1;a0时,4(x4)0,解集为(,4),整数解有无穷多,故a0不符合条件; a0时,x(a)(x4)0,其中a4,故解集为(,4)(a,+),整数解有无穷多,故a0不符合条件;综上所述,a1故答案为:1【答案点睛】本题考查了解不等式,均值不等式,意在考查学生的计算能力和综合应用能力.15、【答案解析】根据约束条件可以画出可行域,从而将问题转化为直线在轴截距最大的问题的求解,通过数形结合的方式可确定过时,取最大值,代入可求得结果.【题目详
18、解】由约束条件可得可行域如下图阴影部分所示: 将化为,则最大时,直线在轴截距最大;由直线平移可知,当过时,在轴截距最大,由得:,.故答案为:.【答案点睛】本题考查线性规划中最值问题的求解,关键是能够将问题转化为直线在轴截距的最值的求解问题,通过数形结合的方式可求得结果.16、【答案解析】根据三视图知该几何体是三棱柱与半圆锥的组合体,结合图中数据求出它的体积【题目详解】根据三视图知,该几何体是三棱柱与半圆锥的组合体,如图所示:结合图中数据,计算它的体积为.故答案为:.【答案点睛】本题考查了根据三视图求简单组合体的体积应用问题,是基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
19、17、(1)(2)详见解析(3)事件虽然发生概率小,但是发生可能性为0.02,所以认为早期体验用户没有发生变化,详见解析【答案解析】(1)由从高校大学生中随机抽取1人,该学生在2021年或2021年之前升级到,结合古典摡型的概率计算公式,即可求解;(2)由题意的所有可能值为,利用相互独立事件的概率计算公式,分别求得相应的概率,得到随机变量的分布列,利用期望的公式,即可求解.(3)设事件为“从这1000人的样本中随机抽取3人,这三位学生都已签约套餐”,得到七概率为,即可得到结论.【题目详解】(1)由题意可知,从高校大学生中随机抽取1人,该学生在2021年或2021年之前升级到的概率估计为样本中早
20、期体验用户和中期跟随用户的频率,即.(2)由题意的所有可能值为,记事件为“从早期体验用户中随机抽取1人,该学生愿意为升级多支付10元或10元以上”,事件为“从中期跟随用户中随机抽取1人,该学生愿意为升级多支付10元或10元以上”,由题意可知,事件,相互独立,且,所以,所以的分布列为0120.180.490.33故的数学期望.(3)设事件为“从这1000人的样本中随机抽取3人,这三位学生都已签约套餐”,那么.回答一:事件虽然发生概率小,但是发生可能性为0.02,所以认为早期体验用户没有发生变化.回答二:事件发生概率小,所以可以认为早期体验用户人数增加.【答案点睛】本题主要考查了离散型随机变量的分
21、布列,数学期望的求解及应用,对于求离散型随机变量概率分布列问题首先要清楚离散型随机变量的可能取值,计算得出概率,列出离散型随机变量概率分布列,最后按照数学期望公式计算出数学期望,其中列出离散型随机变量概率分布列及计算数学期望是理科高考数学必考问题.18、(1)(2)【答案解析】(1)把代入,利用零点分段讨论法求解;(2)对任意成立转化为求的最小值可得.【题目详解】解:(1)当时,不等式可化为.讨论:当时,所以,所以;当时,所以,所以;当时,所以,所以.综上,当时,不等式的解集为.(2)因为,所以.又因为,对任意成立,所以,所以或.故实数的取值范围为.【答案点睛】本题主要考查含有绝对值不等式的解
22、法及恒成立问题,恒成立问题一般是转化为最值问题求解,侧重考查数学建模和数学运算的核心素养.19、()分布列见解析,;();()至少增加2人.【答案解析】()求出X的所有可能取值为9,12,15,18,24,求出概率,得到X的分布列,然后求解期望即可()当P(aXb)取到最大值时,求出a,b的可能值,然后求解P(aXb)的最大值即可()利用前两问的结果,判断至少增加2人【题目详解】()X的取值为:9,12,15,18,24;,,X的分布列为:X912151824P故X的数学期望;()当P(aXb)取到最大值时,a,b的值可能为:,或,或.经计算,,所以P(aXb)的最大值为.()至少增加2人.【
23、答案点睛】本题考查离散型随机变量及其分布列,离散型随机变量的期望与方差,属于中等题.20、(1);(2)见解析.【答案解析】(1)将所求问题转化为在上有解,进一步转化为函数最值问题;(2)将所证不等式转化为,进一步转化为,然后再通过构造加以证明即可.【题目详解】(1),根据题意,在内存在单调减区间,则不等式在上有解,由得,设,则,当且仅当时,等号成立,所以当时,所以存在,使得成立,所以的取值范围为。(2)当时,则,从而所证不等式转化为,不妨设,则不等式转化为,即,即,令,则不等式转化为,因为,则,从而不等式化为,设,则,所以在上单调递增,所以即不等式成立,故原不等式成立.【答案点睛】本题考查了利用导数研究函数单调性、利用导数证明不等式,这里要强调一点,在证明不等式时,通常是构造函数,将问题转化为函数的极值或最值来处理,本题是一道有高度的压轴解答题.21、(1)(2)应该购买21
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030年中国助力车蓄电池数据监测研究报告
- 公共健康领域的大数据挖掘与处理技术探讨
- 企业如何通过并购提升在健康科技领域的竞争力
- 从大到强医疗大数据驱动下的中国精准医疗服务平台的发展与创新
- 以人为本的手术室现代化设计思路
- 国画购销合同协议
- 地面施工面包砖合同协议
- 岭南文化特色课程故事
- 城乡房地产转让合同协议
- 地坪工程出租合同协议
- 压力性尿失禁讲稿
- DB37∕T 5164-2020 建筑施工现场管理标准
- 赞美诗歌1050首下载
- 上海市长宁区2022年高考英语一模试卷(含答案)
- 全国中小学美术教师基本功比赛理论知识测试试卷
- 土方工程量计算与平衡调配
- 16起触电事故案例分析
- 额定电压35kV及以下电力电缆技术规范
- 各种配电箱接线系统图25024
- 小升初自我介绍、幼升小学生个人简历、儿童简历word模板
- 童年歌词拼音版
评论
0/150
提交评论