福建省南安市国光中学2023学年高三最后一卷数学试卷(含解析)_第1页
福建省南安市国光中学2023学年高三最后一卷数学试卷(含解析)_第2页
福建省南安市国光中学2023学年高三最后一卷数学试卷(含解析)_第3页
福建省南安市国光中学2023学年高三最后一卷数学试卷(含解析)_第4页
福建省南安市国光中学2023学年高三最后一卷数学试卷(含解析)_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年高考数学模拟测试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知四棱锥中,平面,底面是边长为2的正方形,为的中点,则异面直线与所成角的余弦值为( )ABCD2若样本的平均数是10,方差为2,则对于样本,下列结论正确的是( )A平均数为2

2、0,方差为4B平均数为11,方差为4C平均数为21,方差为8D平均数为20,方差为83若集合M1,3,N1,3,5,则满足MXN的集合X的个数为()A1B2C3D44椭圆是日常生活中常见的图形,在圆柱形的玻璃杯中盛半杯水,将杯体倾斜一个角度,水面的边界即是椭圆.现有一高度为12厘米,底面半径为3厘米的圆柱形玻璃杯,且杯中所盛水的体积恰为该玻璃杯容积的一半(玻璃厚度忽略不计),在玻璃杯倾斜的过程中(杯中的水不能溢出),杯中水面边界所形成的椭圆的离心率的取值范围是( )ABCD5在等腰直角三角形中,为的中点,将它沿翻折,使点与点间的距离为,此时四面体的外接球的表面积为( ).ABCD6某装饰公司制

3、作一种扇形板状装饰品,其圆心角为120,并在扇形弧上正面等距安装7个发彩色光的小灯泡且在背面用导线相连(弧的两端各一个,导线接头忽略不计),已知扇形的半径为30厘米,则连接导线最小大致需要的长度为( )A58厘米B63厘米C69厘米D76厘米7设函数,则函数的图像可能为( )ABCD8将函数向左平移个单位,得到的图象,则满足( )A图象关于点对称,在区间上为增函数B函数最大值为2,图象关于点对称C图象关于直线对称,在上的最小值为1D最小正周期为,在有两个根9 下列与的终边相同的角的表达式中正确的是()A2k45(kZ)Bk360(kZ)Ck360315(kZ)Dk (kZ)10在中,内角A,B

4、,C所对的边分别为a,b,c,D是AB的中点,若,且,则面积的最大值是( )ABCD11设(是虚数单位),则( )AB1C2D12已知复数是正实数,则实数的值为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13某校共有师生1600人,其中教师有1000人,现用分层抽样的方法,从所有师生中抽取一个容量为80的样本,则抽取学生的人数为_14已知一个圆锥的底面积和侧面积分别为和,则该圆锥的体积为_15某几何体的三视图如图所示,且该几何体的体积是3,则正视图的的值_16已知椭圆:的左,右焦点分别为,过的直线交椭圆于,两点,若,且的三边长,成等差数列,则的离心率为_.三、解答题:共70分

5、。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,四棱锥中,底面是边长为的菱形,点分别是的中点(1)求证:平面;(2)若,求直线与平面所成角的正弦值18(12分)已知函数(1)时,求不等式解集;(2)若的解集包含于,求a的取值范围19(12分)已知椭圆:(),与轴负半轴交于,离心率.(1)求椭圆的方程;(2)设直线:与椭圆交于,两点,连接,并延长交直线于,两点,已知,求证:直线恒过定点,并求出定点坐标.20(12分)已知数列满足对任意都有,其前项和为,且是与的等比中项,(1)求数列的通项公式;(2)已知数列满足,设数列的前项和为,求大于的最小的正整数的值21(12分)己知,函数.(

6、1)若,解不等式;(2)若函数,且存在使得成立,求实数的取值范围.22(10分)如图,在三棱柱中,平面,且.(1)求棱与所成的角的大小;(2)在棱上确定一点,使二面角的平面角的余弦值为.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】由题意建立空间直角坐标系,表示出各点坐标后,利用即可得解.【题目详解】平面,底面是边长为2的正方形,如图建立空间直角坐标系,由题意:,为的中点,.,异面直线与所成角的余弦值为即为.故选:B.【答案点睛】本题考查了空间向量的应用,考查了空间想象能力,属

7、于基础题.2、D【答案解析】由两组数据间的关系,可判断二者平均数的关系,方差的关系,进而可得到答案.【题目详解】样本的平均数是10,方差为2,所以样本的平均数为,方差为.故选:D.【答案点睛】样本的平均数是,方差为,则的平均数为,方差为.3、D【答案解析】可以是共4个,选D.4、C【答案解析】根据题意可知当玻璃杯倾斜至杯中水刚好不溢出时,水面边界所形成椭圆的离心率最大,由椭圆的几何性质即可确定此时椭圆的离心率,进而确定离心率的取值范围.【题目详解】当玻璃杯倾斜至杯中水刚好不溢出时,水面边界所形成椭圆的离心率最大.此时椭圆长轴长为,短轴长为6,所以椭圆离心率,所以.故选:C【答案点睛】本题考查了

8、橢圆的定义及其性质的简单应用,属于基础题.5、D【答案解析】如图,将四面体放到直三棱柱中,求四面体的外接球的半径转化为求三棱柱外接球的半径,然后确定球心在上下底面外接圆圆心连线中点,这样根据几何关系,求外接球的半径.【题目详解】中,易知, 翻折后, ,设外接圆的半径为, , ,如图:易得平面,将四面体放到直三棱柱中,则球心在上下底面外接圆圆心连线中点,设几何体外接球的半径为, , 四面体的外接球的表面积为.故选:D【答案点睛】本题考查几何体的外接球的表面积,意在考查空间想象能力,和计算能力,属于中档题型,求几何体的外接球的半径时,一般可以用补形法,因正方体,长方体的外接球半径 容易求,可以将一

9、些特殊的几何体补形为正方体或长方体,比如三条侧棱两两垂直的三棱锥,或是构造直角三角形法,确定球心的位置,构造关于外接球半径的方程求解.6、B【答案解析】由于实际问题中扇形弧长较小,可将导线的长视为扇形弧长,利用弧长公式计算即可.【题目详解】因为弧长比较短的情况下分成6等分,所以每部分的弦长和弧长相差很小,可以用弧长近似代替弦长,故导线长度约为63(厘米).故选:B.【答案点睛】本题主要考查了扇形弧长的计算,属于容易题.7、B【答案解析】根据函数为偶函数排除,再计算排除得到答案.【题目详解】定义域为: ,函数为偶函数,排除 ,排除 故选【答案点睛】本题考查了函数图像,通过函数的单调性,奇偶性,特

10、殊值排除选项是常用的技巧.8、C【答案解析】由辅助角公式化简三角函数式,结合三角函数图象平移变换即可求得的解析式,结合正弦函数的图象与性质即可判断各选项.【题目详解】函数,则,将向左平移个单位,可得,由正弦函数的性质可知,的对称中心满足,解得,所以A、B选项中的对称中心错误;对于C,的对称轴满足,解得,所以图象关于直线对称;当时,由正弦函数性质可知,所以在上的最小值为1,所以C正确;对于D,最小正周期为,当,由正弦函数的图象与性质可知,时仅有一个解为,所以D错误;综上可知,正确的为C,故选:C.【答案点睛】本题考查了三角函数式的化简,三角函数图象平移变换,正弦函数图象与性质的综合应用,属于中档

11、题.9、C【答案解析】利用终边相同的角的公式判断即得正确答案.【题目详解】与的终边相同的角可以写成2k (kZ),但是角度制与弧度制不能混用,所以只有答案C正确.故答案为C【答案点睛】(1)本题主要考查终边相同的角的公式,意在考查学生对该知识的掌握水平和分析推理能力.(2) 与终边相同的角=+ 其中.10、A【答案解析】根据正弦定理可得,求出,根据平方关系求出.由两端平方,求的最大值,根据三角形面积公式,求出面积的最大值.【题目详解】中,由正弦定理可得,整理得,由余弦定理,得.D是AB的中点,且,即,即,当且仅当时,等号成立.的面积,所以面积的最大值为.故选:.【答案点睛】本题考查正、余弦定理

12、、不等式、三角形面积公式和向量的数量积运算,属于中档题.11、A【答案解析】先利用复数代数形式的四则运算法则求出,即可根据复数的模计算公式求出【题目详解】,故选:A【答案点睛】本题主要考查复数代数形式的四则运算法则的应用,以及复数的模计算公式的应用,属于容易题12、C【答案解析】将复数化成标准形式,由题意可得实部大于零,虚部等于零,即可得到答案.【题目详解】因为为正实数,所以且,解得.故选:C【答案点睛】本题考查复数的基本定义,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、1【答案解析】直接根据分层抽样的比例关系得到答案.【题目详解】分层抽样的抽取比例为,抽取学生的人数为60

13、01故答案为:1【答案点睛】本题考查了分层抽样的计算,属于简单题.14、【答案解析】依据圆锥的底面积和侧面积公式,求出底面半径和母线长,再根据勾股定理求出圆锥的高,最后利用圆锥的体积公式求出体积。【题目详解】设圆锥的底面半径为,母线长为,高为,所以有 解得, 故该圆锥的体积为。【答案点睛】本题主要考查圆锥的底面积、侧面积和体积公式的应用。15、3【答案解析】 由已知中的三视图可得该几何体是一个以直角梯形为底面,梯形上下边长为和,高为, 如图所示,平面, 所以底面积为, 几何体的高为,所以其体积为 点睛:在由三视图还原为空间几何体的实际形状时,要从三个视图综合考虑,根据三视图的规则,空间几何体的

14、可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线在还原空间几何体实际形状时,一般是以正视图和俯视图为主,结合侧视图进行综合考虑求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解16、【答案解析】设,根据勾股定理得出,而由椭圆的定义得出的周长为,有,便可求出和的关系,即可求得椭圆的离心率.【题目详解】解:由已知,的三边长,成等差数列,设,而,根据勾股定理有:,解得:,由椭圆定义知:的周长为,有,在直角中,由勾股定理,即:,离心率.故答案为:.【答案点睛】本题考查椭圆的离心率以及椭圆的定义的应用,考查计算能力.三、

15、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【答案解析】(1)取的中点,连接,通过证明,即可证得;(2)建立空间直角坐标系,利用向量的坐标表示即可得解.【题目详解】(1)证明:取的中点,连接是的中点,又,四边形是平行四边形,又平面平面,平面(2),同理可得:,又平面连接,设,则,建立空间直角坐标系 设平面的法向量为,则,则,取直线与平面所成角的正弦值为【答案点睛】此题考查证明线面平行,求线面角的大小,关键在于熟练掌握线面平行的证明方法,法向量法求线面角的基本方法,根据公式准确计算.18、(1)(2)【答案解析】(1) 代入可得对分类讨论即可得不等式的解

16、集; (2)根据不等式在上恒成立去绝对值化简可得再去绝对值即可得关于 的不等式组解不等式组即可求得的取值范围【题目详解】(1)当时,不等式可化为,当时,不等式为,解得;当时,不等式为,无解;当时,不等式为,解得,综上,原不等式的解集为(2)因为的解集包含于,则不等式可化为,即解得,由题意知,解得,所以实数a的取值范围是【答案点睛】本题考查了绝对值不等式的解法分类讨论解绝对值不等式的应用,含参数不等式的解法.难度一般.19、(1) (2)证明见解析;定点坐标为【答案解析】(1)由条件直接算出即可(2)由得,由可得,同理,然后由推出即可【题目详解】(1)由题有,.,.椭圆方程为.(2)由得,.又,

17、同理又,此时满足直线恒过定点【答案点睛】涉及椭圆的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体带入”等解法.20、(1)(2)4【答案解析】(1)利用判断是等差数列,利用求出,利用等比中项建立方程,求出公差可得.(2)利用的通项公式,求出,用错位相减法求出,最后建立不等式求出最小的正整数.【题目详解】解:任意都有,数列是等差数列,又是与的等比中项,设数列的公差为,且,则,解得,;由题意可知 ,得:,由得, 满足条件的最小的正整数的值为【答案点睛】本题考查等差数列的通项公式和前项和公式及错位相减法求和. (1)解决等差数列通项的思路(1)在等差数列中,是最基本的两个

18、量,一般可设出和,利用等差数列的通项公式和前项和公式列方程(组)求解即可. (2)错位相减法求和的方法:如果数列是等差数列,是等比数列,求数列的前项和时,可采用错位相减法,一般是和式两边同乘以等比数列的公比,然后作差求解; 在写“”与“”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“”的表达式21、(1);(2)【答案解析】(1)零点分段解不等式即可(2)等价于,由,得不等式即可求解【题目详解】(1)当时,当时,由,解得;当时,由,解得;当时,由,解得.综上可知,原不等式的解集为.(2).存在使得成立,等价于.又因为,所以,即.解得,结合,所以实数的取值范围为.【答案点睛】本题考查绝对值不等式的解法,考查不等式恒成立及最值,考查转化思想,是中档题22、(1) (2)【答案解析】试题分析:(1)因为ABAC,A1B平面ABC,所以以A为坐标原点,分别以AC、AB所在直线分别为x轴和y轴,以过A,且平行于BA1的直线为z轴建立空间直角坐标系,由AB=AC=A1B=2求出所要用到的点的坐标,求出棱AA1与BC上的两个向量,由向量的夹角求棱AA1与BC所成的角的大小;(2)设棱B1C1上的一点P,由向量共线得到P点的坐标,然后求出两个平面PAB与平面ABA1的一个法向量,把二面角P-AB-

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论