版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1不等式无实数解,则的取值范围是( )ABCD2定义:如果一个向量列从第二项起,每一项与它的前一项的差都等于同一个常向量,那么这个向量列做等差向量列,这个常向量叫做等差向量
2、列的公差.已知向量列是以为首项,公差的等差向量列.若向量与非零向量)垂直,则( )ABCD3从名学生中选取名组成参观团,若采用下面的方法选取:先用简单随机抽样从人中剔除人,剩下的人再按系统抽样的方法进行.则每人入选的概率( )A不全相等B均不相等C都相等,且为D都相等,且为4两个半径都是的球和球相切,且均与直二面角的两个半平面都相切,另有一个半径为的小球与这二面角的两个半平面也都相切,同时与球和球都外切,则的值为( )ABCD5甲、乙、丙、丁4个人跑接力赛,则甲乙两人必须相邻的排法有( )A6种B12种C18种D24种6若函数在区间上单调递减,则实数t的取值范围是()ABCD7已知函数g(x)
3、=loga(x3)+2(a0,a1)的图象经过定点M,若幂函数f(x)=x的图象过点M,则的值等于()A1B12C2D8甲、乙、丙、丁四位同学各自对、两变量的线性相关性做试验,并用回归分析方法分别求得相关系数与残差平方和如表:甲乙丙丁0.820.780.690.85106115124103则哪位同学的试验结果体现、两变量有更强的线性相关性( )A甲B乙C丙D丁9已知集合,则=( )ABCD10已知函数,若,均在1,4内,且,则实数的取值范围是()ABCD11己知点A是抛物线的对称轴与准线的交点,点B为抛物线的焦点,P在抛物线上且满足,当取最大值时,点P恰好在以A、B为焦点的双曲线上,则双曲线的
4、离心率为ABCD12一张储蓄卡的密码共有位数字,每位数字都可以是中的任意一个.某人在银行自动取款机上取钱时,忘记了密码的最后一位数字,任意按最后一位数字,则不超过次就按对的概率为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13向量,在正方形网格(每个小正方形的边长为1)中的位置如图所示,若向量与共线,则_14若曲线在点处的切线方程为,则的值为_15设向量,若,则实数的值为_.16直线的参数方程为(为参数),则的倾斜角大小为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知a0,设p:实数x满足x2-4ax+3a20 ,q(1)若a=1,且pq为
5、真,求实数x的取值范围;(2)若p是q的必要不充分条件,求实数a的取值范围18(12分)已知椭圆的右顶点为,定点,直线与椭圆交于另一点.()求椭圆的标准方程;()试问是否存在过点的直线与椭圆交于两点,使得成立?若存在,请求出直线的方程;若不存在,请说明理由.19(12分)在极坐标系中,O为极点,点在曲线上,直线过点且与垂直,垂足为P(1)当时,求及的极坐标方程(2)当在上运动且点P在线段上时,求点P的轨迹的极坐标方程20(12分)遇龙塔建于明代万历年间,简体砖石结构,屹立于永州市城北潇水东岸,为湖南省重点文物保护单位之一游客乘船进行观光,到达潇水河河面的处时测得塔顶在北偏东45的方向上,然后向
6、正北方向行驶后到达处,测得此塔顶在南偏东的方向上,仰角为,且,若塔底与河面在同一水平面上,求此塔的高度21(12分)随着网络的发展,网上购物越来越受到人们的喜爱,各大购物网站为增加收入,促销策略越来越多样化,促销费用也不断增加.下表是某购物网站2017年1-8月促销费用(万元)和产品销量(万件)的具体数据.(1)根据数据可知与具有线性相关关系,请建立关于的回归方程(系数精确到);(2)已知6月份该购物网站为庆祝成立1周年,特制定奖励制度:以(单位:件)表示日销量,则每位员工每日奖励100元;,则每位员工每日奖励150元;,则每位员工每日奖励200元.现已知该网站6月份日销量服从正态分布,请你计
7、算某位员工当月奖励金额总数大约多少元.(当月奖励金额总数精确到百分位)参考数据:,其中,分别为第个月的促销费用和产品销量,.参考公式:(1)对于一组数据,其回归方程的斜率和截距的最小二乘估计分别为,.(2)若随机变量服从正态分布,则,.22(10分)随着“互联网交通”模式的迅猛发展,“共享助力单车”在很多城市相继出现某“共享助力单车”运营公司为了解某地区用户对该公司所提供的服务的满意度,随机调查了100名用户,得到用户的满意度评分,现将评分分为5组,如下表:组别一二三四五满意度评分0,2)2,4)4,6)6,8)8,10频数510a3216频率0.05b0.37c0.16 (1)求表格中的a,
8、b,c的值;(2)估计用户的满意度评分的平均数;(3)若从这100名用户中随机抽取25人,估计满意度评分低于6分的人数为多少?参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用绝对值不等式的性质,因此得出的范围,再根据无实数解得出的范围。【详解】解:由绝对值不等式的性质可得,即.因为无实数解所以,故选C。【点睛】本题考查了绝对值不等式的性质,利用绝对值不等式的性质解出变量的范围是解决问题的关键。2、D【解析】先根据等差数列通项公式得向量,再根据向量垂直得递推关系,最后根据累乘法求结果.【详解】由题意得,因为向量与非零
9、向量)垂直,所以因此故选:D【点睛】本题考查等差数列通项公式、向量垂直坐标表示以及累乘法,考查综合分析求解能力,属中档题.3、C【解析】按系统抽样的概念知应选C,可分两步:一是从2018人中剔除18留下的概率是,第二步从2000人中选50人选中的概率是,两者相乘即得【详解】从2018人中剔除18人每一个留下的概率是,再从2000人中选50人被选中的概率是,每人入选的概率是故选C【点睛】本题考查随机抽样的事件与概率,在这种抽样机制中,每个个体都是无差别的个体,被抽取的概率都相等4、D【解析】取三个球心点所在的平面,过点、分别作、,垂足分别为点,过点分别作,分别得出、以及,然后列出有关的方程,即可
10、求出的值【详解】因为三个球都与直二面角的两个半平面相切,所以与、共面,如下图所示,过点、分别作、,垂足分别为点,过点分别作,则,所以,等式两边平方得,化简得,由于,解得,故选D【点睛】本题主要考查球体的性质,以及球与平面相切的性质、二面角的性质,考查了转化思想与空间想象能力,属于难题转化是数学解题的灵魂,合理的转化不仅仅使问题得到了解决,还可以使解决问题的难度大大降低,本题将空间问题转化为平面问题是解题的关键.5、B【解析】甲乙两人捆绑一起作为一个人与其他2人全排列,内部2人全排列【详解】因为甲乙两人必须相邻,看成一个整体,所以甲乙两人必须相邻的排法有种,故选:B.【点睛】本题考查排列问题,相
11、邻问题用捆绑法求解6、A【解析】由函数在区间上单调递减,得到不等式在恒成立,再根据二次函数根的分布,求实数t的取值范围.【详解】因为函数在区间上单调递减,所以在恒成立,所以即解得:.【点睛】本题考查利用导数研究函数的单调性、利用二次函数根的分布求参数取值范围,考查逻辑思维能力和运算求解能力,求解时要充分利用二次函数的图象特征,把恒成立问题转化成只要研究两个端点的函数值正负问题.7、B【解析】由对数函数的性质得到点M(4,2)在幂函数f(x)=x的图象上,由此先求出幂函数f(x),从而能求出的值【详解】y=loga(x3)+2(a0,a1)的图象过定点M,M(4,2),点M(4,2)也在幂函数f
12、(x)=x的图象上,f(4)=4=2,解得=12故选B【点睛】本题考查函数值的求法,是基础题,解题时要认真审题,注意对数函数、幂函数的性质的合理运用8、D【解析】试题分析:由题表格;相关系数越大,则相关性越强而残差越大,则相关性越小可得甲、乙、丙、丁四位同学,中丁的线性相关性最强考点:线性相关关系的判断9、B【解析】利用集合的基本运算定义即可求出答案【详解】已知集合,利用集合的基本运算定义即可得:答案:B【点睛】本题考查集合的基本运算,属于基础题10、D【解析】先求导,利用函数的单调性,结合,确定;再利用,即,可得,设,确定在上递增,在有零点,即可求实数的取值范围【详解】解:,当时, 恒成立,
13、则f(x)在(0,+)上递增,则f(x)不可能有两个相等的函数值故;由题设, 则 考虑到,即,设,则 在上恒成立,在上递增,在有零点,则 , , 故实数的取值范围是【点睛】本题考查了通过构造函数,转化为函数存在零点,求参数取值范围的问题,本题的难点是根据已知条件,以及,变形为,然后构造函数转化为函数零点问题.11、B【解析】根据题目可知,过作准线的垂线,垂足为,则由抛物线的定义,结合,可得,设的倾斜角为,当取得最大值时,最小,此时直线与抛物线相切,即可求出的的坐标,再利用双曲线的定义,即可求得双曲线得离心率。【详解】由题意知,由对称性不妨设P点在y轴的右侧,过作准线的垂线,垂足为,则根据则抛物
14、线的定义,可得,设的倾斜角为,当取得最大值时,最小,此时直线与抛物线相切,设直线的方程为,与联立,得,令,解得可得,又此时点P恰好在以A、B为焦点的双曲线上双曲线的实轴故答案选B。【点睛】本题主要考查了双曲线与抛物线的性质的应用,在解决圆锥曲线相关问题时常用到方程思想以及数形结合思想。12、B【解析】利用互斥事件概率加法公式和相互独立事件概率乘法公式直接求解,即可求得答案.【详解】设第次按对密码为事件第一次按对第一次按错,第二次按对第一次按错,第二次按错,第三次按对事件,事件,事件是互斥,任意按最后一位数字,则不超过次就按对的概率由概率的加法公式得:故选:C【点睛】本题考查概率的求法,考查互斥
15、事件概率加法公式和相互独立事件概率乘法公式等基础知识,考查运算求解能力,是基础题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】建立平面直角坐标系,从而得到的坐标,这样即可得出的坐标,根据与共线,可求出,从而求出的坐标,即得解.【详解】建立如图所示平面直角坐标系,则: ;与共线故答案为:【点睛】本题考查了平面向量线性运算和共线的坐标表示,考查了学生概念理解,数形结合,数学运算的能力,属于中档题.14、2【解析】试题分析:,又在点处的切线方程是,考点:三角函数化简求值 15、或.【解析】由公式结合空间向量数量积的坐标运算律得出关于实数的方程,解出该方程可得出实数的值.【详解】,则,
16、解得或.故答案为或.【点睛】本题考查空间向量数量积的坐标运算,解题的关键就是利用空间向量数量积的坐标运算列出方程求解,考查运算求解能力,属于中等题.16、【解析】分析:根据题意,将直线的参数方程变形为普通方程,由直线的方程形式分析可得答案.详解:根据题意,直线的参数方程为(为参数),则直线的普通的方程为:,斜率为,倾斜角为.故答案为:.点睛:本题考查直线的参数方程及倾斜角,注意将直线的参数方程变形为普通方程.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)2x0 当a=1时,1x3,即p为真时,实数x的取值范围是1x3.由x-31,得2x4,即q为真时,实数x的取值范
17、围是2x4因为pq为真,所以p真且q真,所以实数x的取值范围是2x3;(2)由x2-4ax+3a所以,p为真时实数x的取值范围是ax3a.因为p是q的必要不充分条件,所以a2且43a所以实数a的取值范围为:43【点睛】本题考查第(1)问考查利用复合命题的真假求参数的取值范围,转化为两个命题为真假时参数取值范围的交集,第(2)问考查由命题的充分必要性求参数的取值范围,转化为集合的包含关系,考查转化与化归的数学思想的应用,属于中等题。18、();()存在,或【解析】(1)由已知可得,再将点代入椭圆方程,求出即可;(2)设,由已知可得,结合,可得,从而有,验证斜率不存在时是否满足条件,当斜率存在时,
18、设其方程为,与椭圆方程联立,根据根与系数关系,得出关系式,结合,即可求解.【详解】()由椭圆的右顶点为知,.把点坐标代入椭圆方程,得.解得.所以椭圆的标准方程为.(),所以.由,得,即,所以.设,则,所以.当直线的斜率不存在时,直线的方程为,这与矛盾.当直线的斜率存在时,设直线的方程为.联立方程得.,.由可得,即.整理得.解得.综上所述,存在满足条件的直线,其方程为或.【点睛】本题考查椭圆的标准方程、直线与椭圆的位置关系,要熟练应用根与系数关系设而不求方法解决相交弦问题,考查计算求解能力,属于中档题.19、(1),极坐标方程为(2)点轨迹的极坐标方程为【解析】(1)当时,直角坐标系坐标为,计算直线方程为化为极坐标方程为(2)点的轨迹为以为直径的圆,坐标方程为,再计算定义域得到答案.【详解】(1)当时,以为原点,极轴为轴建立直角坐标系,在直角坐标系中有,则直线的斜率由点斜式可得直线:,化成极坐标方程为;(2),则点的轨迹为以为直径的圆此时圆的直角坐标方程为化成极坐标方程为,又在线段上,由可得,点轨迹的极坐标方程为).【点睛】本题考查了直线的极坐标方程,轨迹方程,忽略掉定义域是容
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 西红柿熟了课件
- 苏教版江苏省徐州市2023-2024学年下学期高二年级第三次检测数学试题
- 六年级数学上册《高频错题训练》
- 西京学院《土木工程施工》2021-2022学年第一学期期末试卷
- 2024秋期国家开放大学本科《古代小说戏曲专题》一平台在线形考(形考任务4)试题及答案
- 2025届江西省高三语文试题及答案
- 西京学院《大数据存储与管理技术》2022-2023学年期末试卷
- 西华师范大学《中国宗教史》2022-2023学年第一学期期末试卷
- 图文《黄昏》课件
- 西华师范大学《外国历史要籍研读》2021-2022学年第一学期期末试卷
- 2024-2030年电动牙刷市场投资前景分析及供需格局研究预测报告
- 2024年度专业会务组织服务协议书版
- 第03讲 鉴赏诗歌的表达技巧(讲义)(学生版) 2025年高考语文一轮复习讲练测(新教材新高考)
- 函数的图象及变换省公开课获奖课件说课比赛一等奖课件
- 2020-2021学年河南省洛阳市高一上学期期中考试化学试题
- 四年级上册语文第六单元任务群教学设计
- 2024-2025学年北师大版九年级数学上册期中培优试题
- 《高血压科普知识》课件
- 《建筑工程设计文件编制深度规定》(2022年版)
- 心理咨询中知情同意的伦理困境与解决途径
- 山地光伏除草施工方案
评论
0/150
提交评论