版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1平面上有个圆,其中每两个都相交于两点,每三个都无公共点,它们将平面分成块区域,有,则( )ABCD2已知则复数ABCD3从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任
2、(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有 ( )A210种B420种C630种D840种4已知函数f(x)=ex(3x-1)-ax+a(a1),若有且仅有两个整数xi (i=1,A-2e,1)B73e2,15一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:“乙说的是事实”经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是( )A乙 B甲 C丁 D丙6已知D,E是边BC的三等分点,点
3、P在线段DE上,若,则xy的取值范围是ABCD7某校实行选科走班制度,张毅同学的选择是物理、生物、政治这三科,且物理在A层班级,生物在B层班级,该校周一上午课程安排如下表所示,张毅选择三个科目的课各上一节,另外一节上自习,则他不同的选课方法有第一节第二节第三节第四节地理B层2班化学A层3班地理A层1班化学A层4班生物A层1班化学B层2班生物B层2班历史B层1班物理A层1班生物A层3班物理A层2班生物A层4班物理B层2班生物B层1班物理B层1班物理A层4班政治1班物理A层3班政治2班政治3班A8种B10种C12种D14种8一个几何体的三视图如右图所示,则这个几何体的体积为( )ABCD89 “b
4、2=ac”是“a,b,c成等比数列”A充分不必要条件 B必要不充分条件C充要条件 D既不充分也不必要条件10已知函数是偶函数(且)的导函数,当时,则使不等式成立的x的取值范围是( )ABCD11小明跟父母、爷爷奶奶一同参加中国诗词大会的现场录制,5人坐成一排.若小明的父母都不与他相邻,则不同坐法的总数为( )A12B36C84D9612设,则“”是“”的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13对于无理数,用表示与最接近的整数,如,.设,对于区间的无理数,定义,我们知道,若,和,则有以下两个恒等式成立:;,那么对于正
5、整数和两个无理数,以下两个等式依然成立的序号是_;.14如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有种(用数字作答)15若关于x的实系数一元二次方程x2+px+q=0有一个根为1+i,则16若一个圆锥的侧面展开图是面积为的半圆面,则该圆锥的体积为 .三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知(1)若,且为真,求实数的取值范围;(2)若是充分不必要条件,求实数的取值范围18(12分)2019年高考前夕某地天空出现了一朵点赞云,为了将这朵祥云送给马上升高三的各位学子,现以坐标
6、原点为极点,轴的正半轴为极轴建立极坐标系,曲线 的极坐标方程为,在直角坐标系中,曲线的参数方程为(为参数),曲线的参数方程为(为参数).(1)求曲线的直角坐标方程:(2)点为曲线上任意一点,点为曲线上任意一点,求的最小值。19(12分)已知函数(1)当时,求的取值范围;(2)时,证明:f(x)有且仅有两个零点。20(12分)已知的内角所对的边分别为,且. (1)若,角,求角的值;(2)若的面积,求的值.21(12分)假设某种人寿保险规定,投保人没活过65岁,保险公司要赔偿10万元;若投保人活过65岁,则保险公司不赔偿,但要给投保人一次性支付4万元已知购买此种人寿保险的每个投保人能活过65岁的概
7、率都为,随机抽取4个投保人,设其中活过65岁的人数为,保险公司支出给这4人的总金额为万元(参考数据:)(1)指出X服从的分布并写出与的关系;(2)求.(结果保留3位小数)22(10分)某学校高三年级有学生1000名,经调查研究,其中750名同学经常参加体育锻炼(称为类同学),另外250名同学不经常参加体育锻炼(称为类同学),现用分层抽样方法(按类、类分二层)从该年级的学生中共抽查100名同学.(1)测得该年级所抽查的100名同学身高(单位:厘米) 频率分布直方图如图,按照统计学原理,根据频率分布直方图计算这100名学生身高数据的平均数和中位数(单位精确到0.01);(2)如果以身高达到作为达标
8、的标准,对抽取的100名学生,得到列联表:体育锻炼与身高达标列联表身高达标身高不达标合计积极参加体育锻炼60不积极参加体育锻炼10合计100完成上表;请问有多大的把握认为体育锻炼与身高达标有关系?参考公式:.参考数据:0.400.250.150.100.050.0250.0100.0050.0010.7081.3232.0722.7063.8415.0246.6357.87910.828参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】分析可得平面内有个圆时, 它们将平面分成块,再添加第个圆时,因为每两个都相交于两点,每
9、三个都无公共点,故会增加个圆.再求和即可.【详解】由题, 添加第个圆时,因为每两个都相交于两点,每三个都无公共点,故会增加个圆.又,故.即.累加可得.故选:B【点睛】本题主要考查了根据数列的递推关系求解通项公式的方法,需要画图分析进行理解.或直接计算等利用排除法判断.属于中档题.2、A【解析】分析:利用复数的乘法法则化简复数,再利用共轭复数的定义求解即.详解:因为,所以,故选A.点睛:本题主要考查的是复数的乘法、共轭复数的定义,属于中档题解答复数运算问题时一定要注意和以及运算的准确性,否则很容易出现错误.3、B【解析】依题意可得,3位实习教师中可能是一男两女或两男一女若是一男两女,则有种选派方
10、案,若是两男一女,则有种选派方案所以总共有种不同选派方案,故选B4、D【解析】设g(x)=ex(3x1),h(x)=axa,对g(x)求导,将问题转化为存在2个整数xi使得g(xi)在直线h(x)=axa的下方,求导数可得函数的极值,解g(1)h(1)0,g(2)h(2)0,求得a的取值范围【详解】设g(x)=ex(3x1),h(x)=axa,则g(x)=ex(3x+2),x(,23),g(x)0,g(xx(23,+),g(x)0,g(xx=23,取最小值-g(0)=1a=h(0),g(1)h(1)=2e0,直线h(x)=axa恒过定点(1,0)且斜率为a,g(1)h(1)=4e1+2a0,a
11、2eg(2)=7e由g(2)h(2)0,解得:a73故答案为73故选D.【点睛】本题考查求函数的导数,利用导数判断函数的单调性和极值问题,涉及转化的思想,属于中档题对于函数恒成立或者有解求参的问题,常用方法有:变量分离,参变分离,转化为函数最值问题;或者直接求函数最值,使得函数最值大于或者小于0;或者分离成两个函数,使得一个函数恒大于或小于另一个函数5、A【解析】由题意,这个问题的关键是四人中有两人说真话,另外两人说了假话,通过这一突破口,进行分析,推理即可得到结论.【详解】在甲、乙、丙、丁四人的供词中,可以得出乙、丁两人的观点是一致的,因此乙丁两人的供词应该是同真同假(即都是真话或都是假话,
12、不会出现一真一假的情况);假设乙、丁两人所得都是真话,那么甲、丙两人说的是假话,由乙说真话可推出丙是犯罪的结论;由甲说假话,推出乙、丙、丁三人不是犯罪的结论;显然这两人是相互矛盾的;所以乙、丁两人说的是假话,而甲、丙两人说的是真话,由甲、丙的供词可以断定乙是犯罪的,乙、丙、丁中有一人是犯罪的,由丁说假话,丙说真话推出乙是犯罪的,综上可得乙是犯罪的,故选A.【点睛】本题主要考查了推理问题的实际应用,其中解答中结合题意,进行分析,找出解决问题的突破口,然后进行推理是解答的关键,着重考查了推理与论证能力.6、D【解析】利用已知条件推出x+y1,然后利用x,y的范围,利用基本不等式求解xy的最值【详解
13、】解:D,E是边BC的三等分点,点P在线段DE上,若,可得,x,则,当且仅当时取等号,并且,函数的开口向下,对称轴为:,当或时,取最小值,xy的最小值为:则xy的取值范围是:故选D【点睛】本题考查函数的最值的求法,基本不等式的应用,考查转化思想以及计算能力7、B【解析】根据表格进行逻辑推理即可得到结果.【详解】张毅不同的选课方法如下:(1)生物B层1班,政治1班,物理A层2班;(2)生物B层1班,政治1班,物理A层4班;(3)生物B层1班,政治2班,物理A层1班;(4)生物B层1班,政治2班,物理A层4班;(5)生物B层1班,政治3班,物理A层1班;(6)生物B层1班,政治3班,物理A层2班;
14、(7)生物B层2班,政治1班,物理A层3班;(8)生物B层2班,政治1班,物理A层4班;(9)生物B层2班,政治3班,物理A层1班;(10)生物B层2班,政治3班,物理A层3班;共10种,故选B.【点睛】本题以实际生活为背景,考查了逻辑推理能力与分类讨论思想,属于中档题.8、C【解析】分析:由三视图可知,该几何体表示一个棱长为的正方体切去一个以直角边长为的等腰直角三角形为底面,高为的三棱锥,即可利用体积公式,求解几何体的体积详解:由给定的三视图可知,该几何体表示一个棱长为的正方体切去一个以直角边长为的等腰直角三角形为底面,高为的三棱锥,所以该几何体的体积为,故选C点睛:本题考查了几何体的三视图
15、及几何体的体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解9、B【解析】10、D【解析】构造函数,利用导数得到,在是增函数,再根据为偶函数,根据,解得的解集【详解】解:令,时,时,在上是减函数,是偶函数(2),当,(2),即,当时,(2),即,是偶函数,当,故不等式的解集是,故选:【点睛】本题考查了抽象函数的奇偶性与单调性,考查了构造函数及数形结合的思想解决本题的关键是能
16、够想到通过构造函数解决,属于中档题11、B【解析】记事件A:小明的父亲与小明相邻,事件B:小明的母亲与小明相邻,利用捆绑法计算出事件A、事件B、事件AB的排法种数nA、nB、nAB【详解】记事件A:小明的父亲与小明相邻,事件B:小明的母亲与小明相邻,对于事件A,将小明与其父亲捆绑,形成一个元素,与其他四个元素进行排序,则nA=A对于事件AB,将小明父母与小明三人进行捆绑,其中小明居于中间,形成一个元素,与其他两个元素进行排序,则nAB=A2【点睛】本题考查排列组合综合问题,考查捆绑法以及容斥原理的应用,解题时要合理利用分类讨论思想与总体淘汰法,考查逻辑推理能力,属于中等题。12、B【解析】分别
17、将两个不等式解出来即可【详解】由得由得所以“”是“”的必要不充分条件故选:B【点睛】设命题p对应的集合为A,命题q对应的集合为B,若AB,则p是q的充分不必要条件,若AB,则p是q的必要不充分条件,若A=B,则p是q的充要条件.二、填空题:本题共4小题,每小题5分,共20分。13、,.【解析】根据新定义,结合组合数公式,进行分类讨论即可.【详解】当时,由定义可知:,当时,由定义可知:,故成立;当时,由定义可知:,当时,由定义可知:,故成立.故答案为:,.【点睛】本题考查了新定义题,考查了数学阅读能力,考查了组合数的计算公式,考查了分类讨论思想.14、390【解析】用2色涂格子有种方法,用3色涂
18、格子,第一步选色有,第二步涂色,共有种,所以涂色方法种方法,故总共有390种方法.故答案为:39015、0【解析】由题意可得1-i也是实系数一元二次方程x2+px+q=0的一个虚数根,利用一元二次方程根与系数的关系求出p和q的值,即可求得p+q【详解】由于复数1+i是实系数一元二次方程x2+px+q=0的一个虚数根,故1-i也是实系数一元二次方程x2+px+q=0的一个虚数根,故1+i+1-i=-p,(1+i)(1-i)=q,故q=-2,p=2,故p+q=0【点睛】本题主要考查实系数的一元二次方程虚根成对定理,一元二次方程根与系数的关系,属于基础题.16、【解析】由面积为的半圆面,可得圆的半径
19、为2,即圆锥的母线长为2.圆锥的底面周长为.所以底面半径为1.即可得到圆锥的高为.所以该圆锥的体积为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)解不等求得p,根据m的值求得q;根据p q为真可知p、q同时为真,可求得x的取值范围(2)先求得q根据p是q的充分不必要条件,得到不等式组,解不等式组即可得到m的取值范围【详解】(1)由x2-6x+50,得1x5,p:1x5.当m=2时,q:-1x3.若pq为真,p,q同时为真命题,则即1x3.实数x的取值范围为1,3.(2)由x2-2x+1-m20,得q:1-mx1+m.p是q的充分不必要条件,解
20、得m4.实数m的取值范围为4,+).【点睛】本题考查了复合命题的简单应用,充分必要条件的关系,属于基础题18、 (1) :;:;: ;(2) 【解析】(1)根据得的直角坐标方程,根据平方关系消参数得的直角坐标方程,根据加减消元得的直角坐标方程(2)结合图像确定的最小值取法,再计算得结果.【详解】解:(1)曲线的直角坐标方程为 直线的直角坐标方程为 直线的直角坐标方程为 (2)由与的方程可知,的距离的最小值为的圆心与点的距离减去的半径。 【点睛】本题考查极坐标方程化直角坐标方程、参数方程化普通方程以及直线与圆位置关系,考查综合分析求解能力,属中档题.19、(1)(2)见解析【解析】(1)参变分离
21、,求最值。确定的取值范围。(2)求导判断的单调性。说明零点存在。【详解】(1)由得令,在上时增函数.(2)当时,()在是增函数又,在上有且仅有一个解,设为-0+最小又有且仅有两个零点.【点睛】本题考查参变分离,利用单调性讨论函数零点,属于中档题。20、(1)或. (2) 【解析】(1)根据正弦定理,求得,进而可求解角B的大小;(2)根据三角函数的基本关系式,求得,利用三角形的面积公式和余弦定理,即可求解。【详解】(1)根据正弦定理得,.,或.(2),且,.,.由正弦定理,得.【点睛】本题主要考查了正弦定理、余弦定理的应用,其中利用正弦、余弦定理可以很好地解决三角形的边角关系,熟练掌握定理、合理运用是解本题的关键其中在中,通常涉及三边三角,知三(除已知三角外)求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广告用品采购合同范例
- 天花铝扣板购销合同范例
- 房产委托开发合同范例
- 异地搬家托运服务合同范例
- 学校购买校服合同范例
- 基建变安装合同范例
- 夫妻遗产分配合同范例
- 《流域开发与治理》课件
- 修理劳务合同范例
- 事故处理合同范例
- GB/Z 43281-2023即时检验(POCT)设备监督员和操作员指南
- (完整)痔疮手术知情同意书
- 八年级上册英语Unit8写作课课件(人教版)
- 《简单教数学》读书 分享
- 腹腔镜手术的麻醉管理
- 写作与沟通智慧树知到课后章节答案2023年下杭州师范大学
- 青少年社会支持评定量表
- 幼儿园儿歌-《秋叶》课件
- 人教PEP版(2023版)小学英语六年级上册电子课本
- 江苏开放大学2023年秋《大学英语(B)(2) 060052 》过程性考核作业4(综合性大作业)(占全过程性考核总评成绩30%)(实践性作业)参考答案
- 1.2《怎样放得更大》教案(新课标版)
评论
0/150
提交评论