2021-2022学年四川省绵阳市梓潼中学数学高二下期末经典模拟试题含解析_第1页
2021-2022学年四川省绵阳市梓潼中学数学高二下期末经典模拟试题含解析_第2页
2021-2022学年四川省绵阳市梓潼中学数学高二下期末经典模拟试题含解析_第3页
2021-2022学年四川省绵阳市梓潼中学数学高二下期末经典模拟试题含解析_第4页
2021-2022学年四川省绵阳市梓潼中学数学高二下期末经典模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高二下数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题

2、卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1如图所示的电路有a,b,c,d四个开关,每个开关断开与闭合的概率均为且是相互独立的,则灯泡甲亮的概率为( )ABCD2下面几种推理过程是演绎推理的是()A某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推测各班人数都超过50人B由三角形的性质,推测空间四面体的性质C平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分D在数列中,可得,由此归纳出的通项公式3二项式展开式中的常数项为( )ABCD4年平昌冬奥会期间,名运动员从左到右排成一排合影留念,

3、最左端只能排甲或乙,最右端不能排甲,则不同的排法种数为( )ABCD5过双曲线的右焦点作圆的切线(切点为),交轴于点.若为线段的中点,则双曲线的离心率是( )ABCD65位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有( )A10种B20种C25种D32种7已知随机变量Z服从正态分布N(0, ),若P(Z2)=0.023,则P(-2Z2)=A0.477B0.625C0.954D0.9778完成一项工作,有两种方法,有5个人只会用第一种方法,另外有4个人只会用第二种方法,从这9个人中选1个人完成这项工作,则不同的选法共有( )A5种B4种C9种D20种9已知f(x

4、)为偶函数,且当x0,2)时,f(x)2sin x,当x2,)时,f(x)log2x,则等于()A2B1C3D210已知定圆, ,定点,动圆满足与外切且与内切,则的最大值为( )ABCD11设函数,则“”是“有4个不同的实数根”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分又不必要条件12下列函数为奇函数的是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知集合,若从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定不同点的个数为_.14已知是双曲线的右焦点,的右支上一点到一条渐近线的距离为2,在另一条渐近线上有一点满足,则_15如果关于的不等式的解

5、集不是空集,则的取值范围是_.16将一边长为的正方形铁片的四角截去四个边长均为的小正方形,然后做成一个无盖的方盒,当等于_时,方盒的容积最大三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)袋中有红、黄、白色球各1个,每次任取1个,有放回地抽三次,求基本事件的个数,写出所有基本事件的全集,并计算下列事件的概率:(1)三次颜色各不相同;(2)三次颜色不全相同;(3)三次取出的球无红色或黄色18(12分)厉害了,我的国这部电影记录:到2017年底,我国高铁营运里程达2.5万公里,位居世界第一位,超过第二名至第十名的总和,约占世界高铁总量的三分之二.如图是我国2009年至2

6、017年高铁营运里程(单位:万公里)的折线图.根据这9年的高铁营运里程,甲、乙两位同学分别选择了与时间变量的两个回归模型:;.(1)求,(精确到0.01);(2)乙求得模型的回归方程为,你认为哪个模型的拟合效果更好?并说明理由.附:参考公式:,.参考数据:1.3976.942850.220.093.7219(12分)某品牌新款夏装即将上市,为了对新款夏装进行合理定价,在该地区的三家连锁店各进行了两天试销售,得到如下数据:连锁店A店B店C店售价x(元)808682888490销量y(元)887885758266 (1)分别以三家连锁店的平均售价与平均销量为散点,如A店对应的散点为,求出售价与销量

7、的回归直线方程;(2)在大量投入市场后,销量与单价仍然服从(1)中的关系,且该夏装成本价为40元/件,为使该新夏装在销售上获得最大利润,该款夏装的单价应定为多少元?(保留整数)附:,.20(12分)选修4-5:不等式选讲已知函数.()当时,求不等式的解集;()当不等式的解集为时,求实数的取值范围.21(12分)如图,已知、两个城镇相距20公里,设是中点,在的中垂线上有一高铁站,的距离为10公里.为方便居民出行,在线段上任取一点(点与、不重合)建设交通枢纽,从高铁站铺设快速路到处,再铺设快速路分别到、两处.因地质条件等各种因素,其中快速路造价为1.5百万元/公里,快速路造价为1百万元/公里,快速

8、路造价为2百万元/公里,设,总造价为(单位:百万元).(1)求关于的函数关系式,并指出函数的定义域;(2)求总造价的最小值,并求出此时的值.22(10分)新高考方案的考试科目简称“”,“3”是指统考科目语数外,“1”指在首选科目“物理、历史”中任选1门,“2”指在再选科目“化学、生物、政治和地理”中任选2门组成每位同学的6门高考科目.假设学生在选科中,选修每门首选科目的机会均等,选择每门再选科目的机会相等.()求某同学选修“物理、化学和生物”的概率;()若选科完毕后的某次“会考”中,甲同学通过首选科目的概率是,通过每门再选科目的概率都是,且各门课程通过与否相互独立.用表示该同学所选的3门课程在

9、这次“会考”中通过的门数,求随机变量的概率分布和数学期望.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由独立事件同时发生的概率公式计算把组成一个事整体,先计算它通路的概率【详解】记通路为事件,则,所以灯泡亮的概率为故选:C.【点睛】本题考查相互独立 事件同时发生的概率,由独立事件的概率公式计算即可2、C【解析】推理分为合情推理(特殊特殊或特殊一般)与演绎推理(一般特殊),其中合情推理包含类比推理与归纳推理,利用各概念进行判断可得正确答案.【详解】解:A中是从特殊一般的推理,均属于归纳推理,是合情推理;B中,由平面三

10、角形的性质,推测空间四面体的性质,是由特殊特殊的推理,为类比推理,属于合情推理;C为三段论,是从一般特殊的推理,是演绎推理;D为不完全归纳推理,属于合情推理故选:C【点睛】本题考查推理中的合情推理与演绎推理,注意理解其概念作出正确判断.3、B【解析】求出二项展开式的通项,使得的指数为,即可得出常数项.【详解】通项为常数项为故选:B【点睛】本题主要考查了利用二项式定理求常数项,属于基础题.4、C【解析】分析:根据题意,分两种情况讨论:最左边排甲;最左边排乙,分别求出每一种情况的安排方法数目,由分类计数原理计算即可得到答案.详解:根据题意,最左端只能排甲或乙,则分两种情况讨论:最左边排甲,则剩下4

11、人进行全排列,有种安排方法;最左边排乙,则先在剩下的除最右边的3个位置选一个安排甲,有3种情况,再将剩下的3人全排列,有种情况,此时有种安排方法,则不同的排法种数为种.故选:C.点睛:解决排列类应用题的策略(1)特殊元素(或位置)优先安排的方法,即先排特殊元素或特殊位置(2)分排问题直排法处理(3)“小集团”排列问题中先集中后局部的处理方法5、B【解析】在中,为线段的中点,又,得到等腰三角形,利用边的关系得到离心率.【详解】在中,为线段的中点,又,则为等腰直角三角形. 故答案选B【点睛】本题考查了双曲线的离心率,属于常考题型.6、D【解析】每个同学都有2种选择,根据乘法原理,不同的报名方法共有

12、种,应选D.7、C【解析】因为随机变量服从正态分布,所以正态曲线关于直线对称,又,所以,所以0.954,故选C.【命题意图】本题考查正态分布的基础知识,掌握其基础知识是解答好本题的关键.8、C【解析】分成两类方法相加.【详解】会用第一种方法的有5个人,选1个人完成这项工作有5种选择;会用第二种方法的有4个人,选1个人完成这项工作有4种选择;两者相加一共有9种选择,故选C.【点睛】本题考查分类加法计数原理.9、D【解析】函数f(x)为偶函数,可得f()=f()再将其代入f(x)=2sinx,进行求解,再根据x2,+)时f(x)=log2x,求出f(4),从而进行求解;【详解】函数f(x)为偶函数

13、,f()=f(),当x0,2)时f(x)=2sinx,f(x)=2sin=2=;当x2,+)时f(x)=log2x,f(4)=log24=2,=+2,故选:D【点睛】此题主要考查函数值的求解问题,解题的过程中需要注意函数的定义域,属于基础题10、A【解析】将动圆的轨迹方程表示出来:,利用椭圆的性质将距离转化,最后利用距离关系得到最值.【详解】定圆, ,动圆满足与外切且与内切设动圆半径为,则表示椭圆,轨迹方程为: 故答案选A【点睛】本题考查了轨迹方程,椭圆的性质,利用椭圆性质变换长度关系是解题的关键.11、B【解析】分析:利用函数的奇偶性将有四个不同的实数根,转化为时,有两个零点,利用导数研究函

14、数的单调性,结合图象可得,从而可得结果.详解:是偶函数,有四个不同根,等价于时,有两个零点,时,时,恒成立,递增,只有一个零点,不合题意,时,令,得在上递增;令,得在上递减,时,有两个零点,得,等价于有四个零点,“”是“有4个不同的实数根”的必要不充分条件,故选B.点睛:本题考查函数的单调性、奇偶性以及函数与方程思想的应用,所以中档题. 函数的性质问题以及函数零点问题是高考的高频考点,考生需要对初高中阶段学习的十几种初等函数的单调性、奇偶性、周期性以及对称性非常熟悉;另外,函数零点的几种等价形式:函数的零点函数在轴的交点方程的根函数与的交点.12、A【解析】试题分析:由题意得,令,则,所以函数

15、为奇函数,故选A考点:函数奇偶性的判定二、填空题:本题共4小题,每小题5分,共20分。13、.【解析】由组合数的性质得出,先求出无任何限制条件下所确定的点的个数,然后考虑坐标中有两个相同的数的点的个数,将两数作差可得出结果.【详解】由组合数的性质得出,不考虑任何限制条件下不同点的个数为,由于,坐标中同时含和的点的个数为,综上所述:所求点的个数为,故答案为.【点睛】本题考查排列组合思想的应用,常用的就是分类讨论和分步骤处理,本题中利用总体淘汰法,可简化分类讨论,考查分析问题和解决问题的能力,属于中等题.14、4【解析】试题分析:双曲线的右焦点F(,0),渐近线方程为,点P到渐近线的距离恰好跟焦点

16、到渐近线的距离相等,所以P 必在过右焦点与一条渐近线平行的直线上,不妨设P在直线上,由方程组得,所以,由方程组得,所以,所以由于,所以考点:向量共线的应用,双曲线的方程与简单几何性质【方法点晴】要求的值,就得求出P、Q两点的坐标,可直接设出P点坐标用点到直线的距离公式,也可结合双曲线的几何性质发现P的轨迹,解方程组即得P、Q 两点坐标,从而求出两个向量的坐标,问题就解决了15、【解析】利用绝对值三角不等式可求得,根据不等式解集不为空集可得根式不等式,根据根式不等式的求法可求得结果.【详解】由绝对值三角不等式得:,即.原不等式解集不是空集,即当时,不等式显然成立;当时,解得:;综上所述:的取值范

17、围为.故答案为:.【点睛】本题考查根据不等式的解集求解参数范围的问题,涉及到绝对值三角不等式的应用、根式不等式的求解等知识;关键是能够根据利用绝对值三角不等式求得函数的最值,将问题转化为变量与函数最值之间的大小关系问题.16、【解析】先求出方盒容积的表达式,再利用导数根据单调性求最大值.【详解】方盒的容积为: 当时函数递减,当时函数递增故答案为【点睛】本题考查了函数的最大值的应用,意在考查学生的应用能力和计算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2);(3);【解析】按球颜色写出所有基本事件;(1)计数三次颜色各不相同的事件数,计算概率;(2)计数

18、三次颜色全相同的事件数,从对立事件角度计算概率;(3)计数三次取出的球无红色或黄色事件数,计算概率;【详解】按抽取的顺序,基本事件全集为:(红红红),(红红黄),(红红蓝),(红黄红),(红黄黄),(红黄蓝),(红蓝红),(红蓝黄),(红蓝蓝),(黄红红),(黄红黄),(黄红蓝),(黄黄红),(黄黄黄),(黄黄蓝),(黄蓝红),(黄蓝黄),(黄蓝蓝),(蓝红红),(蓝红黄),(蓝红蓝),(蓝黄红),(蓝黄黄),(蓝黄蓝),(蓝蓝红),(蓝蓝黄),(蓝蓝蓝),共27个(1)三次颜色各不相同的事件有(红黄蓝),(红蓝黄),(黄红蓝),(黄蓝红),(蓝红黄),(蓝黄红),共6个,概率为;(2)其中颜

19、色全相同的有3个,因此所求概率为;(3)三次取出的球红黄都有的事件有12个,因此三次取出的球无红色或黄色事件有15个,概率为无红色或黄色事件【点睛】本题考查古典概型概率,解题关键是写出所有基本事件的集合,然后按照要求计数即可,当然有时也可从对立事件的角度考虑18、(1)(2)模型的拟合效果较好【解析】分析:(1)求出,代入最小二乘法公式即可求得 ,(2)利用公式求得,比较大小可得结论.详解:(1), , (2), , 因为,所以模型的拟合效果较好点睛:本小题主要考查回归直线、回归分析等基础知识;考查运算求解能力和应用意识;考查数形结合思想、概率与统计思想19、(1)(2)【解析】(1)求出三家连锁店的平均年售价和平均销量,根据回归系数公式计算回归系数,得出回归方程(2)设定价为,得出利润关于的函数,利用二次函数的性质确定出的最值【详解】(1)三家连锁店的平均售价和销售量分别为,售价与销量的回归直线方程为(2)设定价为元,则利润为当时,取得最大值,即利润最大【点睛】本题主要考查了线性回归方程的求解,二次函数的性质,属于中档题20、 () () 或【解析】()根据的范围得到分段函数的解析式,从而分别在三段区间上求解不等式,取并集得到所求解集;()由绝对值三

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论