对数与对数运算_第1页
对数与对数运算_第2页
对数与对数运算_第3页
对数与对数运算_第4页
对数与对数运算_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、对数与对数运算第1页,共35页,2022年,5月20日,2点4分,星期三1问题的提出:截止到1999年底,我们人口约13亿,如果今后能将人口年平均均增长率控制在1%,那么经过x年后,我国人口数最多为多少(精确到亿)? 引入这是已知底数和幂的值,求指数的问题。即指数式 中,已知a 和N,求b的问题。(这里 a0且a1 )问:哪一年的人口数可达到18亿,20亿?第2页,共35页,2022年,5月20日,2点4分,星期三 一般地,如果 ,那么数x 叫做以a为底N的对数,记作其中a叫做对数的底数,N叫做真数。对 数新课教学第3页,共35页,2022年,5月20日,2点4分,星期三常用对数: 我们通常将

2、以10为底的对数叫做常用对数。 为了简便,N的常用对数 简记作 .自然对数: 在科学技术中常常使用以无理数e=2.71828为底的对数,以e为底的对数叫自然对数。 并且把 简记作 。 新课教学第4页,共35页,2022年,5月20日,2点4分,星期三例如: 根据对数的定义,可以得到对数与指数间的关系:当a0,a1时,新课教学第5页,共35页,2022年,5月20日,2点4分,星期三1. 是不是所有的实数都有对数?logaNx 中的N 可以取哪些值? 负数与零没有对数,即:N02. 根据对数的定义以及对数与指数的关系, loga1? logaa? loga10, logaa1 在axN 中,x

3、=logaN,则有3. 对数恒等式(a0, a1)思考与探究第6页,共35页,2022年,5月20日,2点4分,星期三例1.将下列指数式化为对数式,对数式化为指 数式: (1)(2)(3)(4)(5)(6)(1)(2)(3)(4)(5)(6)解: 范例第7页,共35页,2022年,5月20日,2点4分,星期三例2.求下列各式中x的值: (1)(2)(3)(4)解: (1)因为所以(2)因为所以(3)因为所以于是(4)因为所以于是范例第8页,共35页,2022年,5月20日,2点4分,星期三思考:概念巩固第9页,共35页,2022年,5月20日,2点4分,星期三求log(12x)(3x2)中的x

4、的取值范围练习:第10页,共35页,2022年,5月20日,2点4分,星期三问题提出:对数源于指数,对数和指数式怎样互化的?指数与对数都是一种运算,而且它们互为逆运算,指数运算有一系列性质,那么对数运算有那些性质呢?第11页,共35页,2022年,5月20日,2点4分,星期三知识探究(一):积与商的对数思考1:求下列三个对数的值: , , .你能发现这三个对数之间有哪些内在联系?思考2:将 推广到一般情形有什么结论?思考3:如果a0,且a1,M0,N0,你能证明等式 成立吗?思考4:若a0,且a1, 均大于0, 则 第12页,共35页,2022年,5月20日,2点4分,星期三(1)设 由对数的

5、定义可以得: MN= 即证得 证明:新课教学第13页,共35页,2022年,5月20日,2点4分,星期三(2)设 由对数的定义可以得: 即证得 证明:新课教学第14页,共35页,2022年,5月20日,2点4分,星期三知识探究(二):幂的对数思考1: 和 有什么关系?推广到一般情形呢?思考2:如果a0,且a1,M0,你有什么方法证明 等式 成立思考3: 对任意实数 恒成立吗?思考4:如果a0,且a1,M0,则 等于什么?第15页,共35页,2022年,5月20日,2点4分,星期三(3)设 由对数的定义可以得: 即证得 证明:新课教学第16页,共35页,2022年,5月20日,2点4分,星期三积

6、、商、幂的对数运算法则:如果 a 0,a 1,M 0, N 0 有:上述证明是运用转化的思想:(1)先通过假设,将对数式化成指数式,(2)利用幂的运算性质进行恒等变形;(3)再根据对数定义将指数式化成对数式。(4)归纳小结:第17页,共35页,2022年,5月20日,2点4分,星期三上述关于对数运算的三个基本性质如何用文字语言描述?两数积的对数,等于各数的对数的和;两数商的对数,等于被除数的对数减去除数的对数;幂的对数等于幂指数乘以底数的对数第18页,共35页,2022年,5月20日,2点4分,星期三其他重要公式2:由对数的定义可以得:证明:设 即证得 这个公式叫做换底公式新课教学第19页,共

7、35页,2022年,5月20日,2点4分,星期三其他重要公式3:证明:由换底公式 取以b为底的对数得: 还可以变形,得 新课教学第20页,共35页,2022年,5月20日,2点4分,星期三(1)(2) 解: 例3.用 表示下列各式: 范例第21页,共35页,2022年,5月20日,2点4分,星期三例4.计算: (1) (2) (3) 范例第22页,共35页,2022年,5月20日,2点4分,星期三= 5+14 = 19解: (1)(2)(1) (2) 范例第23页,共35页,2022年,5月20日,2点4分,星期三= 3解: (3)(3) 范例第24页,共35页,2022年,5月20日,2点4

8、分,星期三讲解范例例5计算: 解法一: 解法二: 第25页,共35页,2022年,5月20日,2点4分,星期三例5计算: 讲解范例 解: 第26页,共35页,2022年,5月20日,2点4分,星期三1.求下列各式的值:(4) (2) (3) (1) 课堂练习第27页,共35页,2022年,5月20日,2点4分,星期三2.用lg,lg,lg表示下列各式:(2)(1) lglglg;lglglg;(3) lglg lg; (4) (2)课堂练习第28页,共35页,2022年,5月20日,2点4分,星期三课堂小结 (1)对数的概念:对数、底数、真数; 常用对数; 自然对数。 (2)对数的运算: 积、

9、商、幂的对数运算法则; 3个重要公式。第29页,共35页,2022年,5月20日,2点4分,星期三 1999底我国人口为13亿,人口增长的年平均增长率为1%,则x年后,我国的人口数为 ;若问多少年后我国的人口达到18亿,即解方程,则而如果计算器只能求10,e为底的对数,那该怎么办?方法:进行换底,把底换成以10,或者换成以e为底或者引入的问题第30页,共35页,2022年,5月20日,2点4分,星期三例5 20世纪30年代,里克特(C.F.Richter)制订了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大.这就是我们常说的里氏震级

10、M,其计算公式为 M=lgA-lgA0 其中,A是被测地震的最大振幅,A0是“标准地震”的振幅(使用标准地震振幅是为了修正测震仪距实际震中的距离造成的偏差). (1)假设在一次地震中,一个距离震中100千米的测震仪记录的地震最大振幅是20,此时标准地震的振幅是0.001,计算这次地震的振级(精确到0.1) (2)5级地震给人的震感已比较明显,计算7.6级地震的最大振幅是5级地震的最大振幅的多少倍?对数的应用第31页,共35页,2022年,5月20日,2点4分,星期三解:(1)因此,这是一次约为里氏4.3级的地震。第32页,共35页,2022年,5月20日,2点4分,星期三(2)由M=lgA-l

11、gA0可得当M=7.6时,地震的最大振幅为当M=5时,地震的最大振幅为所以,两次地震的最大振幅之比是答:7.6级地震的最大振幅大约是5级地震的最大振幅是398倍.第33页,共35页,2022年,5月20日,2点4分,星期三例6 科学研究表明,宇宙射线在大气中能够产生放射性碳14,碳14的衰变极有规律,其精确性可以称为自然界的“标准时钟”.动植物在生长过程中衰变的碳14,可以通过与大气的相互作用得到补充,所以活着的动植物每克组织中的碳14含量保持不变.死亡后的动植物,停止了与外界环境的相互作用,机体中原有的碳14按确定的规律衰减,我们已经知道其“半衰期”为5730年. 湖南长沙马王堆汉墓女尸出土时碳14的残余量约占原始含量的76.7%,试推算马王堆古墓的年代.对数的应用第34页,共35

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论